These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10070791)

  • 1. Modelling the anisotropic electrical properties of skeletal muscle.
    Hart FX; Berner NJ; McMillen RL
    Phys Med Biol; 1999 Feb; 44(2):413-21. PubMed ID: 10070791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation method for the anisotropic electrical conductivity of
    Kangasmaa O; Laakso I
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36228622
    [No Abstract]   [Full Text] [Related]  

  • 3. Anisotropy of human muscle via non-invasive impedance measurements.
    Aaron R; Huang M; Shiffman CA
    Phys Med Biol; 1997 Jul; 42(7):1245-62. PubMed ID: 9253037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximate complex electrical potential distribution in the monodomain model with unequal conductivity and relative permittivity anisotropy ratios.
    Kwon H; de Morentin MM; Nagy JA; Rutkove SB; Sanchez B
    Physiol Meas; 2019 Sep; 40(8):085008. PubMed ID: 31408853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angular dependence of resistance in non-invasive electrical measurements of human muscle: the tensor model.
    Shiffman CA; Aaron R
    Phys Med Biol; 1998 May; 43(5):1317-23. PubMed ID: 9623658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The low-frequency dielectric properties of octopus arm muscle measured in vivo.
    Hart FX; Toll RB; Berner NJ; Bennett NH
    Phys Med Biol; 1996 Oct; 41(10):2043-52. PubMed ID: 8912379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium.
    Abascal JF; Arridge SR; Lionheart WR; Bayford RH; Holder DS
    Physiol Meas; 2007 Jul; 28(7):S129-40. PubMed ID: 17664630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies.
    Glidewell ME; Ng KT
    IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of skeletal muscle anisotropy on induced currents from low-frequency magnetic fields.
    Tachas NJ; Samaras T; Baskourelos K; Sahalos JN
    Phys Med Biol; 2009 Dec; 54(23):N541-7. PubMed ID: 19904037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing electrode configuration for electrical impedance measurements of muscle via the finite element method.
    Jafarpoor M; Li J; White JK; Rutkove SB
    IEEE Trans Biomed Eng; 2013 May; 60(5):1446-52. PubMed ID: 23314763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic skeletal muscle using multipolar needles.
    Kwon H; Guasch M; Nagy JA; Rutkove SB; Sanchez B
    Sci Rep; 2019 Feb; 9(1):3145. PubMed ID: 30816169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new computational approach for electrical analysis of biological tissues.
    Ramos A; Raizer A; Marques JL
    Bioelectrochemistry; 2003 Apr; 59(1-2):73-84. PubMed ID: 12699822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ranking the influence of tissue conductivities on forward-calculated ECGs.
    Keller DU; Weber FM; Seemann G; Dössel O
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1568-76. PubMed ID: 20659824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the measurement of skeletal muscle anisotropic permittivity property with a single cross-shaped needle insertion.
    Kwon H; Park HC; Barrera AC; Rutkove SB; Sanchez B
    Sci Rep; 2022 May; 12(1):8494. PubMed ID: 35589764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic biological tissues.
    Kwon H; Nagy JA; Taylor R; Rutkove SB; Sanchez B
    Phys Med Biol; 2017 Nov; 62(22):8616-8633. PubMed ID: 28905814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The volume conductor effects of anisotropic muscle on body surface potentials using an eccentric spheres model.
    Schmidt JA; Pilkington TC
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):300-3. PubMed ID: 2066145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of two models for calculating the electrical potential in skeletal muscle.
    Roth BJ; Gielen FL
    Ann Biomed Eng; 1987; 15(6):591-602. PubMed ID: 3688587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Simulation of skeletal muscles dielectric behaviour with theoretical model].
    Ma Q; Watanabe M; Suzaki T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):619-21, 624. PubMed ID: 15357445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal impedance of single frog muscle fibers.
    Mobley BA; Leung J; Eisenberg RS
    J Gen Physiol; 1975 Jan; 65(1):97-113. PubMed ID: 1078575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.