BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 10070956)

  • 1. Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status.
    SyljuÄsen RG; Krolewski B; Little JB
    Cancer Res; 1999 Mar; 59(5):1008-14. PubMed ID: 10070956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytogenetic damage and the radiation-induced G1-phase checkpoint.
    Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF
    Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines.
    Li CY; Nagasawa H; Dahlberg WK; Little JB
    Oncogene; 1995 Nov; 11(9):1885-92. PubMed ID: 7478618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.
    O'Connor PM; Jackman J; Jondle D; Bhatia K; Magrath I; Kohn KW
    Cancer Res; 1993 Oct; 53(20):4776-80. PubMed ID: 8402660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation.
    Bristow RG; Hu Q; Jang A; Chung S; Peacock J; Benchimol S; Hill R
    Oncogene; 1998 Apr; 16(14):1789-802. PubMed ID: 9583677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of a radiation-induced first-cycle G1-S arrest in p53+ human tumor cells synchronized by mitotic selection.
    Nagasawa H; Keng P; Maki C; Yu Y; Little JB
    Cancer Res; 1998 May; 58(9):2036-41. PubMed ID: 9581850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between radiation-induced G1 phase arrest and p53 function in human tumor cells.
    Nagasawa H; Li CY; Maki CG; Imrich AC; Little JB
    Cancer Res; 1995 May; 55(9):1842-6. PubMed ID: 7728750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indistinct cell cycle checkpoint after u.v. damage in H-ras-transformed mouse liver cells despite normal p53 gene expression.
    Kadohama T; Tsuji K; Ogawa K
    Oncogene; 1994 Oct; 9(10):2845-52. PubMed ID: 8084590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation.
    Pocard M; Chevillard S; Villaudy J; Poupon MF; Dutrillaux B; Remvikos Y
    Oncogene; 1996 Feb; 12(4):875-82. PubMed ID: 8632910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function.
    Bracey TS; Williams AC; Paraskeva C
    Clin Cancer Res; 1997 Aug; 3(8):1371-81. PubMed ID: 9815821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrocarbon carcinogens evade cellular defense mechanism of G1 arrest in nontransformed and malignant lung cell lines.
    Khan QA; Anderson LM
    Toxicol Appl Pharmacol; 2001 Jun; 173(2):105-13. PubMed ID: 11384212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late mitosis/early G1 phase and mid-G1 phase are not hypersensitive cell cycle phases for neoplastic transformation of HeLa x skin fibroblast human hybrid cells induced by fission-spectrum neutrons.
    Redpath JL; Antoniono RJ; Sun C; Gerstenberg HM; Blakely WF
    Radiat Res; 1995 Jan; 141(1):37-43. PubMed ID: 7527914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the progression of cells through the cell cycle after exposure to alpha particles or gamma rays.
    Gadbois DM; Crissman HA; Nastasi A; Habbersett R; Wang SK; Chen D; Lehnert BE
    Radiat Res; 1996 Oct; 146(4):414-24. PubMed ID: 8927713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biology of marrow stromal cell lines derived from long-term bone marrow cultures of Trp53-deficient mice.
    Epperly MW; Bray JA; Carlos TM; Prochownik E; Greenberger JS
    Radiat Res; 1999 Jul; 152(1):29-40. PubMed ID: 10381838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early ultraviolet B-induced G1 arrest and suppression of the malignant phenotype by wild-type p53 in human squamous cell carcinoma cells.
    Courtois SJ; Woodworth CD; Degreef H; Garmyn M
    Exp Cell Res; 1997 May; 233(1):135-44. PubMed ID: 9184083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells.
    Russell KJ; Wiens LW; Demers GW; Galloway DA; Plon SE; Groudine M
    Cancer Res; 1995 Apr; 55(8):1639-42. PubMed ID: 7712467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity.
    Warenius HM; Jones M; Gorman T; McLeish R; Seabra L; Barraclough R; Rudland P
    Br J Cancer; 2000 Oct; 83(8):1084-95. PubMed ID: 10993658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity.
    McIlwrath AJ; Vasey PA; Ross GM; Brown R
    Cancer Res; 1994 Jul; 54(14):3718-22. PubMed ID: 8033090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous p53 mutation in murine mesothelial cells: increased sensitivity to DNA damage induced by asbestos and ionizing radiation.
    Cistulli CA; Sorger T; Marsella JM; Vaslet CA; Kane AB
    Toxicol Appl Pharmacol; 1996 Nov; 141(1):264-71. PubMed ID: 8917699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 mutational status and survival of human breast cancer MCF-7 cell variants after exposure to X rays or fission neutrons.
    Balcer-Kubiczek EK; Yin J; Lin K; Harrison GH; Abraham JM; Meltzer SJ
    Radiat Res; 1995 Jun; 142(3):256-62. PubMed ID: 7761574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.