These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10071)

  • 1. Roles of low pH, carbon and inorganic nitrogen source use in chlamydospore formation by Fusarium solani.
    Griffin GJ
    Can J Microbiol; 1976 Sep; 22(9):1381-9. PubMed ID: 10071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the exogenous carbon and nitrogen requirements for chlamydospore germination of Fusarium solani by contact with soil.
    Griffin GJ
    Can J Microbiol; 1973 Aug; 19(8):999-1005. PubMed ID: 4752344
    [No Abstract]   [Full Text] [Related]  

  • 3. Exogenous carbon and nitrogen requirements for chlamydospore germination by Fusarium solani: dependence on spore density.
    Griffin GJ
    Can J Microbiol; 1970 Dec; 16(12):1366-8. PubMed ID: 5521394
    [No Abstract]   [Full Text] [Related]  

  • 4. Soil fungistasis: elevation of the exogenous carbon and nitrogen requirements for spore germination by fungistatic volatiles in soils.
    Griffin GJ; Hora TS; Baker R
    Can J Microbiol; 1975 Oct; 21(10):1468-75. PubMed ID: 135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon and nitrogen requirements for macroconidial germination of Fusarium solani: dependence on conidial density.
    Griffin GJ
    Can J Microbiol; 1970 Aug; 16(8):733-40. PubMed ID: 5484061
    [No Abstract]   [Full Text] [Related]  

  • 6. Ultrastructure of forming and dormant chlamydospores of Fusarium solani in soil.
    Van Eck WH
    Can J Microbiol; 1976 Nov; 22(11):1634-42. PubMed ID: 974911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid body content and persistence of chlamydospores of Fusarium solani in soil.
    van Eck WH
    Can J Microbiol; 1978 Jan; 24(1):65-9. PubMed ID: 754878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydospore induction in pure culture in Fusarium solani.
    Cochrane VW; Cochrane JC
    Mycologia; 1971; 63(3):462-77. PubMed ID: 4935359
    [No Abstract]   [Full Text] [Related]  

  • 9. Requirements for the rapid conversion of macroconidia of Fusarium sulphureum to chlamydospores.
    Barran LR; Schneider EF; Seaman WL
    Can J Microbiol; 1977 Feb; 23(2):148-51. PubMed ID: 837252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature and sources of carbon and nitrogen on the conidial germination and appresoria formation in Colletotrichum capsici.
    Solanki JS; Jain JP; Agnihotri JP
    Mycopathol Mycol Appl; 1974 Apr; 52(3):191-6. PubMed ID: 4407375
    [No Abstract]   [Full Text] [Related]  

  • 11. Suitability of membrane-filter techniques to study the ultrastructure of Fusarium solani in soil.
    Van Eck WH
    Can J Microbiol; 1976 Nov; 22(11):1628-33. PubMed ID: 974910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum.
    Ohara T; Tsuge T
    Eukaryot Cell; 2004 Dec; 3(6):1412-22. PubMed ID: 15590816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of chlamydospore formation in fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2.
    Li L; Ma M; Huang R; Qu Q; Li G; Zhou J; Zhang K; Lu K; Niu X; Luo J
    J Chem Ecol; 2012 Aug; 38(8):966-74. PubMed ID: 22932866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Loss and Germinability, Viability, and Virulence of Chlamydospores of Fusarium solani f. sp. phaseoli After Exposure to Soil at Different pH Levels, Temperatures, and Matric Potentials.
    Mondal SN; Hyakumachi M
    Phytopathology; 1998 Feb; 88(2):148-55. PubMed ID: 18944984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal competence and spore germination in Fusarium solani.
    Rado TA; Cochrane VW
    J Bacteriol; 1971 May; 106(2):301-4. PubMed ID: 5573727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation inside multicelled macroconidia of Fusarium culmorum during early germination.
    Chitarra GS; Breeuwer P; Rombouts FM; Abee T; Dijksterhuis J
    Fungal Genet Biol; 2005 Aug; 42(8):694-703. PubMed ID: 15914044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth responses of two phytopathogenic fungi to fernasan in culture media.
    Abdalla MH
    Mycopathologia; 1975 Jun; 55(3):169-73. PubMed ID: 1152969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous carbon and nitrogen requirements for conidial germination by Aspergillus flavus.
    Pass T; Griffin GJ
    Can J Microbiol; 1972 Sep; 18(9):1453-61. PubMed ID: 4627197
    [No Abstract]   [Full Text] [Related]  

  • 19. Lipid metabolism and benzo[a]pyrene degradation by Fusarium solani: an unexplored potential.
    Delsarte I; Rafin C; Mrad F; Veignie E
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):12177-12182. PubMed ID: 29392603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPORE GERMINATION AND CARBON METABOLISM IN FUSARIUM SOLANI. IV. METABOLISM OF ETHANOL AND ACETATE.
    COCHRANE VW; COCHRANE JC; VOGEL JM; COLES RS
    J Bacteriol; 1963 Aug; 86(2):312-9. PubMed ID: 14058958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.