These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10071215)

  • 81. Germline mutation in
    Hansen AW; Arora P; Khayat MM; Smith LJ; Lewis AM; Rossetti LZ; Jayaseelan J; Cristian I; Haynes D; DiTroia S; Meeks N; Delgado MR; Rosenfeld JA; Pais L; White SM; Meng Q; Pehlivan D; Liu P; Gingras MC; Wangler MF; Muzny DM; Lupski JR; Kaplan CD; Gibbs RA
    HGG Adv; 2021 Jan; 2(1):. PubMed ID: 33665635
    [No Abstract]   [Full Text] [Related]  

  • 82. Repetitive sequences in malaria parasite proteins.
    Davies HM; Nofal SD; McLaughlin EJ; Osborne AR
    FEMS Microbiol Rev; 2017 Nov; 41(6):923-940. PubMed ID: 29077880
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain.
    Gibbs EB; Lu F; Portz B; Fisher MJ; Medellin BP; Laremore TN; Zhang YJ; Gilmour DS; Showalter SA
    Nat Commun; 2017 May; 8():15233. PubMed ID: 28497798
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells.
    Dias JD; Rito T; Torlai Triglia E; Kukalev A; Ferrai C; Chotalia M; Brookes E; Kimura H; Pombo A
    Elife; 2015 Dec; 4():. PubMed ID: 26687004
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Histone exchange, chromatin structure and the regulation of transcription.
    Venkatesh S; Workman JL
    Nat Rev Mol Cell Biol; 2015 Mar; 16(3):178-89. PubMed ID: 25650798
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy.
    Stubbs SH; Conrad NK
    Nucleic Acids Res; 2015 Jan; 43(1):504-19. PubMed ID: 25477387
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain.
    Yang C; Stiller JW
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5920-5. PubMed ID: 24711388
    [TBL] [Abstract][Full Text] [Related]  

  • 88. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template.
    Corden JL
    Chem Rev; 2013 Nov; 113(11):8423-55. PubMed ID: 24040939
    [No Abstract]   [Full Text] [Related]  

  • 89. The RNA polymerase II CTD coordinates transcription and RNA processing.
    Hsin JP; Manley JL
    Genes Dev; 2012 Oct; 26(19):2119-37. PubMed ID: 23028141
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The role of cancer stem cells in breast cancer initiation and progression: potential cancer stem cell-directed therapies.
    Economopoulou P; Kaklamani VG; Siziopikou K
    Oncologist; 2012; 17(11):1394-401. PubMed ID: 22941971
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The changing role of pathology in breast cancer diagnosis and treatment.
    Leong AS; Zhuang Z
    Pathobiology; 2011; 78(2):99-114. PubMed ID: 21677473
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases.
    Kishore SP; Perkins SL; Templeton TJ; Deitsch KW
    J Mol Evol; 2009 Jun; 68(6):706-14. PubMed ID: 19449052
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multiple roles for Sox2 in the developing and adult mouse trachea.
    Que J; Luo X; Schwartz RJ; Hogan BL
    Development; 2009 Jun; 136(11):1899-907. PubMed ID: 19403656
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy.
    Kakarala M; Wicha MS
    J Clin Oncol; 2008 Jun; 26(17):2813-20. PubMed ID: 18539959
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Chromatin and transcription regulation].
    Razin SV
    Mol Biol (Mosk); 2007; 41(3):387-94. PubMed ID: 17685218
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation.
    Chapman RD; Conrad M; Eick D
    Mol Cell Biol; 2005 Sep; 25(17):7665-74. PubMed ID: 16107713
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure.
    Sano M; Wang SC; Shirai M; Scaglia F; Xie M; Sakai S; Tanaka T; Kulkarni PA; Barger PM; Youker KA; Taffet GE; Hamamori Y; Michael LH; Craigen WJ; Schneider MD
    EMBO J; 2004 Sep; 23(17):3559-69. PubMed ID: 15297879
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability.
    Chapman RD; Palancade B; Lang A; Bensaude O; Eick D
    Nucleic Acids Res; 2004; 32(1):35-44. PubMed ID: 14704341
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A 10 residue motif at the C-terminus of the RNA pol II CTD is required for transcription, splicing and 3' end processing.
    Fong N; Bird G; Vigneron M; Bentley DL
    EMBO J; 2003 Aug; 22(16):4274-82. PubMed ID: 12912924
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3' cleavage.
    Ryan K; Murthy KG; Kaneko S; Manley JL
    Mol Cell Biol; 2002 Mar; 22(6):1684-92. PubMed ID: 11865048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.