BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10071488)

  • 1. Partitioning of glycogen, lipid, and sugar in ovaries and body remnants of female Aedes aegypti (Diptera: Culicidae) fed human blood.
    Naksathit AT; Edman JD; Scott TW
    J Med Entomol; 1999 Jan; 36(1):18-22. PubMed ID: 10071488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amounts of glycogen, lipid, and sugar in adult female Aedes aegypti (Diptera: Culicidae) fed sucrose.
    Naksathit AT; Edman JD; Scott TW
    J Med Entomol; 1999 Jan; 36(1):8-12. PubMed ID: 10071486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of human blood and sugar as nutrients by female Aedes aegypti (Diptera: Culicidae).
    Naksathit AT; Edman JD; Scott SW
    J Med Entomol; 1999 Jan; 36(1):13-7. PubMed ID: 10071487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood?
    Harrington LC; Edman JD; Scott TW
    J Med Entomol; 2001 May; 38(3):411-22. PubMed ID: 11372967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar.
    Naksathit AT; Scott TW
    J Am Mosq Control Assoc; 1998 Jun; 14(2):148-52. PubMed ID: 9673914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic effects of energy status on meal size and egg-batch size of Aedes aegypti (Diptera: Culicidae).
    Mostowy WM; Foster WA
    J Vector Ecol; 2004 Jun; 29(1):84-93. PubMed ID: 15266745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes.
    Zhou G; Flowers M; Friedrich K; Horton J; Pennington J; Wells MA
    J Insect Physiol; 2004 Apr; 50(4):337-49. PubMed ID: 15081827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced juvenile hormone synthesis in mosquitoes with low teneral reserves reduces ovarian previtellogenic development in Aedes aegypti.
    Caroci AS; Li Y; Noriega FG
    J Exp Biol; 2004 Jul; 207(Pt 15):2685-90. PubMed ID: 15201301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle.
    Zhou G; Pennington JE; Wells MA
    Insect Biochem Mol Biol; 2004 Sep; 34(9):919-25. PubMed ID: 15350611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive physiology of Aedes (Aedimorphus) vexans (Diptera: Culicidae) in relation to flight potential.
    Briegel H; Waltert A; Kuhn AR
    J Med Entomol; 2001 Jul; 38(4):557-65. PubMed ID: 11476336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in energy metabolism and adult desiccation resistance among three Aedes (Stegomyia) species (Diptera: Culicidae) from South Sulawesi, Indonesia.
    Sawabe K; Mogi M
    J Med Entomol; 1999 Jan; 36(1):101-7. PubMed ID: 10071500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood.
    Scott TW; Naksathit A; Day JF; Kittayapong P; Edman JD
    Am J Trop Med Hyg; 1997 Aug; 57(2):235-9. PubMed ID: 9288822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency.
    Scott TW; Amerasinghe PH; Morrison AC; Lorenz LH; Clark GG; Strickman D; Kittayapong P; Edman JD
    J Med Entomol; 2000 Jan; 37(1):89-101. PubMed ID: 15218911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq analysis of blood meal induced gene-expression changes in Aedes aegypti ovaries.
    Nag DK; Dieme C; Lapierre P; Lasek-Nesselquist E; Kramer LD
    BMC Genomics; 2021 May; 22(1):396. PubMed ID: 34044772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae).
    Telang A; Rechel JA; Brandt JR; Donnell DM
    J Insect Physiol; 2013 Mar; 59(3):283-94. PubMed ID: 23238126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproductive and metabolic differences between Aedes aegypti and Ae. albopictus (Diptera: Culicidae).
    Klowden MJ; Chambers GM
    J Med Entomol; 1992 May; 29(3):467-71. PubMed ID: 1625295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of body size and sugar meals on oviposition of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae).
    Tsunoda T; Fukuchi A; Nanbara S; Takagi M
    J Vector Ecol; 2010 Jun; 35(1):56-60. PubMed ID: 20618648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences between the nutritional reserves of laboratory-maintained and field-collected adult mosquitoes.
    Day JF; Van Handel E
    J Am Mosq Control Assoc; 1986 Jun; 2(2):154-7. PubMed ID: 2906967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique.
    Scott TW; Clark GG; Lorenz LH; Amerasinghe PH; Reiter P; Edman JD
    J Med Entomol; 1993 Jan; 30(1):94-9. PubMed ID: 8433350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of preblood-meal sugar on sugar seeking and upwind flight by gravid and parous Aedes aegypti (Diptera: Culicidae).
    Hancock RG; Foster WA
    J Med Entomol; 1993 Mar; 30(2):353-9. PubMed ID: 8459411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.