These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 10071488)
1. Partitioning of glycogen, lipid, and sugar in ovaries and body remnants of female Aedes aegypti (Diptera: Culicidae) fed human blood. Naksathit AT; Edman JD; Scott TW J Med Entomol; 1999 Jan; 36(1):18-22. PubMed ID: 10071488 [TBL] [Abstract][Full Text] [Related]
2. Amounts of glycogen, lipid, and sugar in adult female Aedes aegypti (Diptera: Culicidae) fed sucrose. Naksathit AT; Edman JD; Scott TW J Med Entomol; 1999 Jan; 36(1):8-12. PubMed ID: 10071486 [TBL] [Abstract][Full Text] [Related]
3. Utilization of human blood and sugar as nutrients by female Aedes aegypti (Diptera: Culicidae). Naksathit AT; Edman JD; Scott SW J Med Entomol; 1999 Jan; 36(1):13-7. PubMed ID: 10071487 [TBL] [Abstract][Full Text] [Related]
4. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? Harrington LC; Edman JD; Scott TW J Med Entomol; 2001 May; 38(3):411-22. PubMed ID: 11372967 [TBL] [Abstract][Full Text] [Related]
5. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. Naksathit AT; Scott TW J Am Mosq Control Assoc; 1998 Jun; 14(2):148-52. PubMed ID: 9673914 [TBL] [Abstract][Full Text] [Related]
6. Antagonistic effects of energy status on meal size and egg-batch size of Aedes aegypti (Diptera: Culicidae). Mostowy WM; Foster WA J Vector Ecol; 2004 Jun; 29(1):84-93. PubMed ID: 15266745 [TBL] [Abstract][Full Text] [Related]
7. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes. Zhou G; Flowers M; Friedrich K; Horton J; Pennington J; Wells MA J Insect Physiol; 2004 Apr; 50(4):337-49. PubMed ID: 15081827 [TBL] [Abstract][Full Text] [Related]
8. Reduced juvenile hormone synthesis in mosquitoes with low teneral reserves reduces ovarian previtellogenic development in Aedes aegypti. Caroci AS; Li Y; Noriega FG J Exp Biol; 2004 Jul; 207(Pt 15):2685-90. PubMed ID: 15201301 [TBL] [Abstract][Full Text] [Related]
9. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Zhou G; Pennington JE; Wells MA Insect Biochem Mol Biol; 2004 Sep; 34(9):919-25. PubMed ID: 15350611 [TBL] [Abstract][Full Text] [Related]
10. Reproductive physiology of Aedes (Aedimorphus) vexans (Diptera: Culicidae) in relation to flight potential. Briegel H; Waltert A; Kuhn AR J Med Entomol; 2001 Jul; 38(4):557-65. PubMed ID: 11476336 [TBL] [Abstract][Full Text] [Related]
11. Differences in energy metabolism and adult desiccation resistance among three Aedes (Stegomyia) species (Diptera: Culicidae) from South Sulawesi, Indonesia. Sawabe K; Mogi M J Med Entomol; 1999 Jan; 36(1):101-7. PubMed ID: 10071500 [TBL] [Abstract][Full Text] [Related]
12. A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. Scott TW; Naksathit A; Day JF; Kittayapong P; Edman JD Am J Trop Med Hyg; 1997 Aug; 57(2):235-9. PubMed ID: 9288822 [TBL] [Abstract][Full Text] [Related]
13. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. Scott TW; Amerasinghe PH; Morrison AC; Lorenz LH; Clark GG; Strickman D; Kittayapong P; Edman JD J Med Entomol; 2000 Jan; 37(1):89-101. PubMed ID: 15218911 [TBL] [Abstract][Full Text] [Related]
14. RNA-Seq analysis of blood meal induced gene-expression changes in Aedes aegypti ovaries. Nag DK; Dieme C; Lapierre P; Lasek-Nesselquist E; Kramer LD BMC Genomics; 2021 May; 22(1):396. PubMed ID: 34044772 [TBL] [Abstract][Full Text] [Related]
15. Long-term impacts of egg quiescence and Wolbachia infection on lipid profiles in Aedes aegypti: Ovarian roles in lipid synthesis during reproduction. Lau MJ; Nie S; Ross PA; Endersby-Harshman NM; Hoffmann AA J Insect Physiol; 2024 Sep; 157():104674. PubMed ID: 38997103 [TBL] [Abstract][Full Text] [Related]
16. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae). Telang A; Rechel JA; Brandt JR; Donnell DM J Insect Physiol; 2013 Mar; 59(3):283-94. PubMed ID: 23238126 [TBL] [Abstract][Full Text] [Related]
17. Reproductive and metabolic differences between Aedes aegypti and Ae. albopictus (Diptera: Culicidae). Klowden MJ; Chambers GM J Med Entomol; 1992 May; 29(3):467-71. PubMed ID: 1625295 [TBL] [Abstract][Full Text] [Related]
18. Effect of body size and sugar meals on oviposition of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). Tsunoda T; Fukuchi A; Nanbara S; Takagi M J Vector Ecol; 2010 Jun; 35(1):56-60. PubMed ID: 20618648 [TBL] [Abstract][Full Text] [Related]
19. Differences between the nutritional reserves of laboratory-maintained and field-collected adult mosquitoes. Day JF; Van Handel E J Am Mosq Control Assoc; 1986 Jun; 2(2):154-7. PubMed ID: 2906967 [TBL] [Abstract][Full Text] [Related]
20. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. Scott TW; Clark GG; Lorenz LH; Amerasinghe PH; Reiter P; Edman JD J Med Entomol; 1993 Jan; 30(1):94-9. PubMed ID: 8433350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]