BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10071685)

  • 1. Colloidal blood volume expansion during high intracranial pressure.
    Kirkeby OJ; Pettersen JR; Ekseth K; Rise IR
    Acta Neurochir (Wien); 1999; 141(1):37-43; discussion 44. PubMed ID: 10071685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebrovascular effects of high intracranial pressure after moderate hemorrhage.
    Rise IR; Risöe C; Kirkeby OJ
    J Neurosurg Anesthesiol; 1998 Oct; 10(4):224-30. PubMed ID: 9796606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of reduced cerebral perfusion pressure on cerebral blood flow following inhibition of nitric oxide synthesis.
    Rise IR; Kirkeby OJ
    J Neurosurg; 1998 Sep; 89(3):448-53. PubMed ID: 9724120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hemorrhage on cerebral microcirculation during normal and high cerebrospinal fluid pressure in pigs.
    Rise IR; Risöe C; Kirkeby OJ
    J Neurosurg Anesthesiol; 1998 Jan; 10(1):49-54. PubMed ID: 9438620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhythmical fluctuations of the intracerebral microcirculation studied in pigs.
    Kirkeby OJ; Rise IR; Risöe C
    Int J Microcirc Clin Exp; 1995; 15(6):316-24. PubMed ID: 8721441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral haemodynamics during proximal aortic cross-clamping.
    Aadahl P; Saether OD; Stenseth R; Juul R; Myhre HO
    Eur J Vasc Surg; 1991 Feb; 5(1):27-31. PubMed ID: 2009981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of alpha-adrenergic blockade on the cerebrovascular response to increased intracranial pressure after hemorrhage.
    Rise IR; Kirkeby OJ
    J Neurosurg; 1998 Sep; 89(3):454-9. PubMed ID: 9724121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats.
    Kroppenstedt SN; Thomale UW; Griebenow M; Sakowitz OW; Schaser KD; Mayr PS; Unterberg AW; Stover JF
    Crit Care Med; 2003 Aug; 31(8):2211-21. PubMed ID: 12973182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of regional cerebral blood flow and blood flow velocity in experimental intracranial hypertension: infusion via the cisterna magna in rabbits.
    Barzó P; Dóczi T; Csete K; Buza Z; Bodosi M
    Neurosurgery; 1991 Jun; 28(6):821-5. PubMed ID: 2067603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral haemodynamics during experimental intracranial hypertension.
    Donnelly J; Czosnyka M; Harland S; Varsos GV; Cardim D; Robba C; Liu X; Ainslie PN; Smielewski P
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):694-705. PubMed ID: 26994043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloid infusion after brain injury: effect on intracranial pressure, cerebral blood flow, and oxygen delivery.
    Zhuang J; Shackford SR; Schmoker JD; Pietropaoli JA
    Crit Care Med; 1995 Jan; 23(1):140-8. PubMed ID: 7528115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precerebral arterial blood flow pattern in intracranial hypertension with cerebral blood flow arrest.
    Nornes H; Angelsen B; Lindegaard KF
    Acta Neurochir (Wien); 1977; 38(3-4):187-94. PubMed ID: 144423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cerebral ischaemia on the cerebrovascular and cardiovascular response to haemorrhage.
    Rise IR; Kirkeby OJ
    Acta Neurochir (Wien); 1998; 140(7):699-705; discussion 705-6. PubMed ID: 9781284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage.
    Muench E; Horn P; Bauhuf C; Roth H; Philipps M; Hermann P; Quintel M; Schmiedek P; Vajkoczy P
    Crit Care Med; 2007 Aug; 35(8):1844-51; quiz 1852. PubMed ID: 17581487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired cerebral autoregulation in the newborn lamb during recovery from severe, prolonged hypoxia, combined with carotid artery and jugular vein ligation.
    Short BL; Walker LK; Traystman RJ
    Crit Care Med; 1994 Aug; 22(8):1262-8. PubMed ID: 8045146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient changes in cerebral vascular resistance during the Valsalva maneuver in man.
    Greenfield JC; Rembert JC; Tindall GT
    Stroke; 1984; 15(1):76-9. PubMed ID: 6229907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Cerebrovascular and Intracranial Pressure Reactivity Assessment of Impaired Cerebrovascular Autoregulation in Intracranial Hypertension.
    Bragin DE; Statom G; Nemoto EM
    Acta Neurochir Suppl; 2016; 122():255-60. PubMed ID: 27165917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sudden arterial blood pressure decrease is compensated by an increase in intracranial blood volume.
    Rosengarten B; Rüskes D; Mendes I; Stolz E
    J Neurol; 2002 May; 249(5):538-41. PubMed ID: 12021942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental hypervolemic hemodilution: physiological correlations of cortical blood flow, cardiac output, and intracranial pressure with fresh blood viscosity and plasma volume.
    Wood JH; Simeone FA; Kron RE; Snyder LL
    Neurosurgery; 1984 Jun; 14(6):709-23. PubMed ID: 6462405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Upper Limit of Cerebral Blood Flow Autoregulation Is Decreased with Elevations in Intracranial Pressure.
    Pesek M; Kibler K; Easley RB; Mytar J; Rhee C; Andropolous D; Brady K
    Acta Neurochir Suppl; 2016; 122():229-31. PubMed ID: 27165912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.