BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10071875)

  • 1. Modelling the thermal impact of a discrete vessel tree.
    Kotte AN; van Leeuwen GM; Lagendijk JJ
    Phys Med Biol; 1999 Jan; 44(1):57-74. PubMed ID: 10071875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: a numerical study on the impact of seed characteristics and implantation techniques.
    van Wieringen N; Kotte AN; van Leeuwen GM; Lagendijk JJ; van Dijk JD; Nieuwenhuys GJ
    Phys Med Biol; 1998 Jan; 43(1):121-38. PubMed ID: 9483627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards patient specific thermal modelling of the prostate.
    Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ
    Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A description of discrete vessel segments in thermal modelling of tissues.
    Kotte A; van Leeuwen G; de Bree J; van der Koijk J; Crezee H; Lagendijk J
    Phys Med Biol; 1996 May; 41(5):865-84. PubMed ID: 8735254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to apply a discrete vessel model in thermal simulations when only incomplete vessel data are available.
    Raaymakers BW; Kotte AN; Lagendijk JJ
    Phys Med Biol; 2000 Nov; 45(11):3385-401. PubMed ID: 11098912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks.
    Kok HP; van den Berg CA; Bel A; Crezee J
    Med Phys; 2013 Oct; 40(10):103303. PubMed ID: 24089933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels.
    Craciunescu OI; Clegg ST
    J Biomech Eng; 2001 Oct; 123(5):500-5. PubMed ID: 11601736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning.
    Sumser K; Neufeld E; Verhaart RF; Fortunati V; Verduijn GM; Drizdal T; van Walsum T; Veenland JF; Paulides MM
    Int J Hyperthermia; 2019; 36(1):801-811. PubMed ID: 31450989
    [No Abstract]   [Full Text] [Related]  

  • 11. Mathematical modeling of thermal ablation in tissue surrounding a large vessel.
    Chen X; Saidel GM
    J Biomech Eng; 2009 Jan; 131(1):011001. PubMed ID: 19045917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of temperature distributions in interstitial hyperthermia: experiments in bovine tongues versus generic simulations.
    Raaymakers BW; Crezee J; Lagendijk JJ
    Phys Med Biol; 1998 May; 43(5):1199-214. PubMed ID: 9623650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of the geometrical description of blood vessels in a thermal model using counter-current geometries.
    Van Leeuwen GM; Kotte AN; Crezee J; Lagendijk JJ
    Phys Med Biol; 1997 Aug; 42(8):1515-32. PubMed ID: 9279903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pulsatile blood flow in large vessels on thermal dose distribution during thermal therapy.
    Horng TL; Lin WL; Liauh CT; Shih TC
    Med Phys; 2007 Apr; 34(4):1312-20. PubMed ID: 17500462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network.
    Shrivastava D; Roemer RB
    J Biomech Eng; 2006 Apr; 128(2):210-6. PubMed ID: 16524332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling individual temperature profiles from an isolated perfused bovine tongue.
    Raaymakers BW; Crezee J; Lagendijk JJ
    Phys Med Biol; 2000 Mar; 45(3):765-80. PubMed ID: 10730970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature uniformity during hyperthermia: the impact of large vessels.
    Crezee J; Lagendijk JJ
    Phys Med Biol; 1992 Jun; 37(6):1321-37. PubMed ID: 1626025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies.
    Consiglieri L; dos Santos I; Haemmerich D
    Phys Med Biol; 2003 Dec; 48(24):4125-34. PubMed ID: 14727756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.
    Zhu L; Xu LX; He Q; Weinbaum S
    J Biomech Eng; 2002 Feb; 124(1):121-32. PubMed ID: 11871598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The theoretical and experimental evaluation of the heat balance in perfused tissue.
    Crezee J; Mooibroek J; Lagendijk JJ; van Leeuwen GM
    Phys Med Biol; 1994 May; 39(5):813-32. PubMed ID: 15552087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.