BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10071875)

  • 21. Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation.
    Welp C; Siebers S; Ermert H; Werner J
    Biomed Tech (Berl); 2006 Dec; 51(5-6):337-46. PubMed ID: 17155870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The simulation of discrete vessel effects in experimental hyperthermia.
    Rawnsley RJ; Roemer RB; Dutton AW
    J Biomech Eng; 1994 Aug; 116(3):256-62. PubMed ID: 7799625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature simulations in tissue with a realistic computer generated vessel network.
    Van Leeuwen GM; Kotte AN; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2000 Apr; 45(4):1035-49. PubMed ID: 10795990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of vascular and non-vascular models for the assessment of temperature distribution during induced hyperthermia.
    Brinck H; Werner J
    Int J Hyperthermia; 1995; 11(5):615-26. PubMed ID: 7594813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling tissue heating with ferromagnetic seeds.
    Kotte AN; van Wieringen N; Lagendijk JJ
    Phys Med Biol; 1998 Jan; 43(1):105-20. PubMed ID: 9483626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analytical solution for temperature distributions in hepatic radiofrequency ablation incorporating the heat-sink effect of large vessels.
    Chen R; Lu F; Wu F; Jiang T; Xie L; Kong D
    Phys Med Biol; 2018 Dec; 63(23):235026. PubMed ID: 30511647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: importance of longitudinal control.
    van der Koijk JF; Lagendijk JJ; Crezee J; de Bree J; Kotte AN; van Leeuwen GM; Battermann JJ
    Int J Hyperthermia; 1997; 13(4):365-85. PubMed ID: 9278767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of the thermal effect of blood flow in a branching countercurrent network using a three-dimensional vascular model.
    Brinck H; Werner J
    J Biomech Eng; 1994 Aug; 116(3):324-30. PubMed ID: 7799635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A blood vessel model based on velocity profiles.
    Barnea O
    Comput Biol Med; 1993 Jul; 23(4):295-300. PubMed ID: 8375152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?
    González-Suárez A; Trujillo M; Burdío F; Andaluz A; Berjano E
    Med Phys; 2014 Aug; 41(8):083301. PubMed ID: 25086561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.
    Hassanpour S; Saboonchi A
    J Therm Biol; 2016 Dec; 62(Pt B):150-158. PubMed ID: 27888929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid finite element-finite difference method for thermal analysis of blood vessels.
    Blanchard CH; Gutierrez G; White JA; Roemer RB
    Int J Hyperthermia; 2000; 16(4):341-53. PubMed ID: 10949130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat transport mechanisms in vascular tissues: a model comparison.
    Baish JW; Ayyaswamy PS; Foster KR
    J Biomech Eng; 1986 Nov; 108(4):324-31. PubMed ID: 3795877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Planning, optimisation and evaluation of hyperthermia treatments.
    Kok HP; Kotte ANTJ; Crezee J
    Int J Hyperthermia; 2017 Sep; 33(6):593-607. PubMed ID: 28540779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast blood-flow simulation for large arterial trees containing thousands of vessels.
    Muller A; Clarke R; Ho H
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):160-170. PubMed ID: 27376402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of large blood vessels on temperature distributions during simulated hyperthermia.
    Chen ZP; Roemer RB
    J Biomech Eng; 1992 Nov; 114(4):473-81. PubMed ID: 1487899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment.
    Lagendijk JJ; Schellekens M; Schipper J; van der Linden PM
    Phys Med Biol; 1984 May; 29(5):495-507. PubMed ID: 6739541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A flexible algorithm for construction of 3-D vessel networks for use in thermal modeling.
    Van Leeuwen GM; Kotte AN; Lagendijk JJ
    IEEE Trans Biomed Eng; 1998 May; 45(5):596-604. PubMed ID: 9581058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytical solutions of Pennes bio-heat transfer equation with a blood vessel.
    Huang HW; Chan CL; Roemer RB
    J Biomech Eng; 1994 May; 116(2):208-12. PubMed ID: 8078328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels.
    Flyckt VM; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2006 Oct; 51(19):5007-21. PubMed ID: 16985284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.