BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10071875)

  • 41. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors.
    Huang HW
    Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computer-optimization of vascular trees.
    Schreiner W; Buxbaum PF
    IEEE Trans Biomed Eng; 1993 May; 40(5):482-91. PubMed ID: 8225337
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regional blood flow analysis and its relationship with arterial branch lengths and lumen volume in the coronary arterial tree.
    Molloi S; Wong JT
    Phys Med Biol; 2007 Mar; 52(5):1495-503. PubMed ID: 17301467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large blood vessel cooling in heated tissues: a numerical study.
    Kolios MC; Sherar MD; Hunt JW
    Phys Med Biol; 1995 Apr; 40(4):477-94. PubMed ID: 7610110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Subsurface thermal behaviour of tissue mimics embedded with large blood vessels during plasmonic photo-thermal therapy.
    Paul A; Narasimhan A; Das SK; Sengupta S; Pradeep T
    Int J Hyperthermia; 2016 Nov; 32(7):765-77. PubMed ID: 27404093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical analysis of temperature and thermal dose response of biological tissues to thermal non-equilibrium during hyperthermia therapy.
    Yuan P
    Med Eng Phys; 2008 Mar; 30(2):135-43. PubMed ID: 17493861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blood flow through sutured and coupled microvascular anastomoses: a comparative computational study.
    Wain RA; Whitty JP; Dalal MD; Holmes MC; Ahmed W
    J Plast Reconstr Aesthet Surg; 2014 Jul; 67(7):951-9. PubMed ID: 24731801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small-scale temperature fluctuations in perfused tissue during local hyperthermia.
    Baish JW; Ayyaswamy PS; Foster KR
    J Biomech Eng; 1986 Aug; 108(3):246-50. PubMed ID: 3747468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved numerical modelling of heat transfer in human tissue exposed to RF energy.
    Prishvin M; Zaridze R; Bit-Babik G; Faraone A
    Australas Phys Eng Sci Med; 2010 Dec; 33(4):307-17. PubMed ID: 21174187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical analysis of the large blood vessel influence on the local tissue temperature decay after pulse heating.
    Xu LX; Chen MM; Holmes KR; Arkin H
    J Biomech Eng; 1993 May; 115(2):175-9. PubMed ID: 8326723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the arterial prestress in blood flow dynamics.
    Pontrelli G
    Med Eng Phys; 2006 Jan; 28(1):6-12. PubMed ID: 15941665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat transfer analysis of skin during thermal therapy using thermal wave equation.
    Kashcooli M; Salimpour MR; Shirani E
    J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Significance of vessel size and type in vascular heat transfer.
    Lemons DE; Chien S; Crawshaw LI; Weinbaum S; Jiji LM
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R128-35. PubMed ID: 3605377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discretizing large traceable vessels and using DE-MRI perfusion maps yields numerical temperature contours that match the MR noninvasive measurements.
    Craciunescu OI; Raaymakers BW; Kotte AN; Das SK; Samulski TV; Lagendijk JJ
    Med Phys; 2001 Nov; 28(11):2289-96. PubMed ID: 11764035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal modelling using discrete vasculature for thermal therapy: A review.
    Kok HP; Gellermann J; van den Berg CA; Stauffer PR; Hand JW; Crezee J
    Int J Hyperthermia; 2013 Jun; 29(4):336-45. PubMed ID: 23738700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An effective fractal-tree closure model for simulating blood flow in large arterial networks.
    Perdikaris P; Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Side Branches on the Computation of Fractional Flow in Intracranial Arterial Stenosis Using the Computational Fluid Dynamics Method.
    Liu H; Lan L; Leng X; Ip HL; Leung TWH; Wang D; Wong KS
    J Stroke Cerebrovasc Dis; 2018 Jan; 27(1):44-52. PubMed ID: 29107636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous measurements of local tissue temperature and blood perfusion rate in the canine prostate during radio frequency thermal therapy.
    Zhu L; Pang L; Xu LX
    Biomech Model Mechanobiol; 2005 Aug; 4(1):1-9. PubMed ID: 15940507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.