These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 10071923)
41. Method To Characterize and Monitor Covalent Interactions of Flavor Compounds with β-Lactoglobulin Using Mass Spectrometry and Proteomics. Anantharamkrishnan V; Reineccius GA J Agric Food Chem; 2020 Nov; 68(46):13121-13130. PubMed ID: 32072807 [TBL] [Abstract][Full Text] [Related]
42. Human complement component C1s. Partial sequence determination of the heavy chain and identification of the peptide bond cleaved during activation. Spycher SE; Nick H; Rickli EE Eur J Biochem; 1986 Apr; 156(1):49-57. PubMed ID: 3007145 [TBL] [Abstract][Full Text] [Related]
43. Determination of the complete amino-acid sequence of porcine miniplasminogen. Marti T; Schaller J; Rickli EE Eur J Biochem; 1985 Jun; 149(2):279-85. PubMed ID: 3846533 [TBL] [Abstract][Full Text] [Related]
44. Functional improvements in β-lactoglobulin by conjugating with soybean soluble polysaccharide. Inada N; Hayashi M; Yoshida T; Hattori M Biosci Biotechnol Biochem; 2015; 79(1):97-102. PubMed ID: 25315246 [TBL] [Abstract][Full Text] [Related]
45. Isolation and rapid sequence characterization of two novel bovine beta-lactoglobulins I and J. Godovac-Zimmermann J; Krause I; Baranyi M; Fischer-Frühholz S; Juszczak J; Erhardt G; Buchberger J; Klostermeyer H J Protein Chem; 1996 Nov; 15(8):743-50. PubMed ID: 9008298 [TBL] [Abstract][Full Text] [Related]
46. Changes in chymotrypsin hydrolysis of beta-lactoglobulin A induced by high hydrostatic pressure. Chicón R; López-Fandiño R; Quirós A; Belloque J J Agric Food Chem; 2006 Mar; 54(6):2333-41. PubMed ID: 16536616 [TBL] [Abstract][Full Text] [Related]
47. One-step method for isolation and purification of native β-lactoglobulin from bovine whey. Stojadinovic M; Burazer L; Ercili-Cura D; Sancho A; Buchert J; Cirkovic Velickovic T; Stanic-Vucinic D J Sci Food Agric; 2012 May; 92(7):1432-40. PubMed ID: 22083849 [TBL] [Abstract][Full Text] [Related]
48. In vitro digestion of beta-lactoglobulin fibrils formed by heat treatment at low pH. Bateman L; Ye A; Singh H J Agric Food Chem; 2010 Sep; 58(17):9800-8. PubMed ID: 20684554 [TBL] [Abstract][Full Text] [Related]
49. Antigen-induced inhibition of experimental allergic encephalomyelitis. IV. Studies of the C-terminal end of the myelin basic protein molecule (1). Swanborg RH Immunol Commun; 1975; 4(4):387-97. PubMed ID: 52611 [TBL] [Abstract][Full Text] [Related]
50. Peptides surviving the simulated gastrointestinal digestion of milk proteins: biological and toxicological implications. Picariello G; Ferranti P; Fierro O; Mamone G; Caira S; Di Luccia A; Monica S; Addeo F J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb; 878(3-4):295-308. PubMed ID: 19962948 [TBL] [Abstract][Full Text] [Related]
51. The lobster carapace carotenoprotein, alpha-crustacyanin. A possible role for tryptophan in the bathochromic spectral shift of protein-bound astaxanthin. Zagalsky PF; Eliopoulos EE; Findlay JB Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):79-83. PubMed ID: 2001254 [TBL] [Abstract][Full Text] [Related]
53. Peptic proteolysis of esterified beta-casein and beta-lactoglobulin. Briand L; Chobert JM; Haertlé T Int J Pept Protein Res; 1995 Jul; 46(1):30-6. PubMed ID: 7558594 [TBL] [Abstract][Full Text] [Related]
54. Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides. Doyen A; Husson E; Bazinet L Food Chem; 2013 Feb; 136(3-4):1193-202. PubMed ID: 23194514 [TBL] [Abstract][Full Text] [Related]
55. Application of liquid chromatography-tandem mass spectrometry for the characterization of galactosylated and tagatosylated beta-lactoglobulin peptides derived from in vitro gastrointestinal digestion. Corzo-Martínez M; Lebrón-Aguilar R; Villamiel M; Quintanilla-López JE; Moreno FJ J Chromatogr A; 2009 Oct; 1216(43):7205-12. PubMed ID: 19747681 [TBL] [Abstract][Full Text] [Related]
56. Influence of denaturation and aggregation of β-lactoglobulin on its tryptic hydrolysis and the release of functional peptides. Leeb E; Götz A; Letzel T; Cheison SC; Kulozik U Food Chem; 2015 Nov; 187():545-54. PubMed ID: 25977062 [TBL] [Abstract][Full Text] [Related]
57. A procedure for the purification of beta-lactoglobulin from bovine milk using gel filtration chromatography at low pH. Naqvi Z; Khan RH; Saleemuddin M Prep Biochem Biotechnol; 2010; 40(4):326-36. PubMed ID: 21108136 [TBL] [Abstract][Full Text] [Related]
58. Allergy to bovine beta-lactoglobulin: specificity of human IgE using cyanogen bromide-derived peptides. Sélo I; Négroni L; Créminon C; Yvon M; Peltre G; Wal JM Int Arch Allergy Immunol; 1998 Sep; 117(1):20-8. PubMed ID: 9751844 [TBL] [Abstract][Full Text] [Related]
59. Bovine beta-lactoglobulin H: isolation by preparative isoelectric focusing in immobilized pH gradients and preliminary characterization. Conti A; Napolitano L; Cantisani AM; Davoli R; Dall'Olio S J Biochem Biophys Methods; 1988; 16(2-3):205-14. PubMed ID: 3411083 [TBL] [Abstract][Full Text] [Related]
60. A novel LC-MS application to investigate oxidation of peptides isolated from β-lactoglobulin. Koivumäki T; Gürbüz G; Poutanen M; Heinonen M J Agric Food Chem; 2012 Jul; 60(27):6799-805. PubMed ID: 22591547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]