These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10073460)

  • 1. Meal-engendered circadian-ensuing activity in rats.
    White W; Timberlake W
    Physiol Behav; 1999 Jan 1-15; 65(4-5):625-42. PubMed ID: 10073460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction.
    Mendoza J; Drevet K; PĂ©vet P; Challet E
    J Neuroendocrinol; 2008 Feb; 20(2):251-60. PubMed ID: 18088363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian clocks for all meal-times: anticipation of 2 daily meals in rats.
    Mistlberger RE; Kent BA; Chan S; Patton DF; Weinberg A; Parfyonov M
    PLoS One; 2012; 7(2):e31772. PubMed ID: 22355393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independence of feeding-associated circadian rhythm from light conditions and meal intervals in SCN lesioned rats.
    Yoshihara T; Honma S; Mitome M; Honma K
    Neurosci Lett; 1997 Jan; 222(2):95-8. PubMed ID: 9111737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meal-synchronized CEA in rats: effects of meal size, intragastric feeding, and subdiaphragmatic vagotomy.
    White W; Schwartz GJ; Moran TH
    Am J Physiol; 1999 May; 276(5):R1276-88. PubMed ID: 10233017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose, but not fat, phase shifts the feeding-entrained circadian clock.
    Stephan FK; Davidson AJ
    Physiol Behav; 1998 Nov; 65(2):277-88. PubMed ID: 9855477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule.
    Walcott EC; Tate BA
    Physiol Behav; 1996 Nov; 60(5):1205-8. PubMed ID: 8916172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Eur J Neurosci; 2005 Dec; 22(11):2855-62. PubMed ID: 16324120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian properties of anticipatory activity to restricted water access in suprachiasmatic-ablated hamsters.
    Mistlberger RE
    Am J Physiol; 1993 Jan; 264(1 Pt 2):R22-9. PubMed ID: 8430882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat.
    Jansen HT; Sergeeva A; Stark G; Sorg BA
    Chronobiol Int; 2012 May; 29(4):454-68. PubMed ID: 22475541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus.
    Landry GJ; Yamakawa GR; Mistlberger RE
    Brain Res; 2007 Apr; 1141():108-18. PubMed ID: 17296167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long T methamphetamine schedules produce circadian ensuing drug activity in rats.
    Pecoraro N; Kosobud AE; Rebec GV; Timberlake W
    Physiol Behav; 2000 Oct 1-15; 71(1-2):95-106. PubMed ID: 11134691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricted daytime feeding modifies suprachiasmatic nucleus vasopressin release in rats.
    Kalsbeek A; van Heerikhuize JJ; Wortel J; Buijs RM
    J Biol Rhythms; 1998 Feb; 13(1):18-29. PubMed ID: 9486840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.
    Dattolo T; Coomans CP; van Diepen HC; Patton DF; Power S; Antle MC; Meijer JH; Mistlberger RE
    Neuroscience; 2016 Feb; 315():91-103. PubMed ID: 26701294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent meal-associated rhythms in SCN-lesioned rats.
    Clarke JD; Coleman GJ
    Physiol Behav; 1986 Jan; 36(1):105-13. PubMed ID: 3952168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resetting of a circadian clock by food pulses.
    Stephan FK
    Physiol Behav; 1992 Nov; 52(5):997-1008. PubMed ID: 1484857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.