BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 10073657)

  • 1. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.
    Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE
    J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the mechanical properties of tissue engineered cartilage.
    Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE; Vunjak-Novakovic G
    Biorheology; 2000; 37(1-2):141-7. PubMed ID: 10912186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGF-I and mechanical environment interact to modulate engineered cartilage development.
    Gooch KJ; Blunk T; Courter DL; Sieminski AL; Bursac PM; Vunjak-Novakovic G; Freed LE
    Biochem Biophys Res Commun; 2001 Sep; 286(5):909-15. PubMed ID: 11527385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioreactor studies of native and tissue engineered cartilage.
    Vunjak-Novakovic G; Obradovic B; Martin I; Freed LE
    Biorheology; 2002; 39(1-2):259-68. PubMed ID: 12082288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondrogenesis in a cell-polymer-bioreactor system.
    Freed LE; Hollander AP; Martin I; Barry JR; Langer R; Vunjak-Novakovic G
    Exp Cell Res; 1998 Apr; 240(1):58-65. PubMed ID: 9570921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation.
    Seidel JO; Pei M; Gray ML; Langer R; Freed LE; Vunjak-Novakovic G
    Biorheology; 2004; 41(3-4):445-58. PubMed ID: 15299276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds.
    Mahmoudifar N; Doran PM
    Biotechnol Bioeng; 2005 Aug; 91(3):338-55. PubMed ID: 15959891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-density cultures of bovine chondrocytes: effects of scaffold material and culture system.
    Hu JC; Athanasiou KA
    Biomaterials; 2005 May; 26(14):2001-12. PubMed ID: 15576174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions.
    Jin F; Zhang Y; Xuan K; He D; Deng T; Tang L; Lu W; Duan Y
    Artif Organs; 2010 Feb; 34(2):118-25. PubMed ID: 19817729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.
    Khan AA; Surrao DC
    Tissue Eng Part C Methods; 2012 May; 18(5):358-68. PubMed ID: 22092352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs.
    Wernike E; Li Z; Alini M; Grad S
    Cell Tissue Res; 2008 Feb; 331(2):473-83. PubMed ID: 17957384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate-chondrocyte constructs.
    Williams GM; Klein TJ; Sah RL
    Acta Biomater; 2005 Nov; 1(6):625-33. PubMed ID: 16701843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.
    Shahin K; Doran PM
    Biotechnol Bioeng; 2012 Apr; 109(4):1060-73. PubMed ID: 22095592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioreactors mediate the effectiveness of tissue engineering scaffolds.
    Pei M; Solchaga LA; Seidel J; Zeng L; Vunjak-Novakovic G; Caplan AI; Freed LE
    FASEB J; 2002 Oct; 16(12):1691-4. PubMed ID: 12207008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of engineered cartilage.
    Obradovic B; Martin I; Padera RF; Treppo S; Freed LE; Vunjak-Novakovic G
    J Orthop Res; 2001 Nov; 19(6):1089-97. PubMed ID: 11781010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment.
    Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture.
    Emin N; Koç A; Durkut S; Elçin AE; Elçin YM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):123-37. PubMed ID: 18437589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.