These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 10074392)

  • 1. Kinetic models and phenomenological analysis of passive lipid translocation in single-file.
    Frickenhaus S; Heinrich R
    J Theor Biol; 1999 Mar; 197(2):175-91. PubMed ID: 10074392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and thermodynamic aspects of lipid translocation in biological membranes.
    Frickenhaus S; Heinrich R
    Biophys J; 1999 Mar; 76(3):1293-309. PubMed ID: 10049313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of phospholipid translocation in the erythrocyte membrane: a combined kinetic and thermodynamic approach.
    Heinrich R; Brumen M; Jaeger A; Müller P; Herrmann A
    J Theor Biol; 1997 Apr; 185(3):295-312. PubMed ID: 9156082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport properties of single-file pores with two conformational states.
    Hernández JA; Fischbarg J
    Biophys J; 1994 Sep; 67(3):996-1006. PubMed ID: 7811956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-file diffusion of uncharged particles.
    Aityan SK
    Gen Physiol Biophys; 1985 Feb; 4(1):3-14. PubMed ID: 2411622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation of polysialic acid across model membranes: kinetic analysis and dynamic studies.
    Janas T; Krajiński H; Timoszyk A; Janas T
    Acta Biochim Pol; 2001; 48(1):163-73. PubMed ID: 11440166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensating lipid fluxes generated by the aminophospholipid translocase.
    Frickenhaus S; Herrmann A; Heinrich R
    Mol Membr Biol; 1998; 15(4):213-20. PubMed ID: 10087508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review).
    Holthuis JC; van Meer G; Huitema K
    Mol Membr Biol; 2003; 20(3):231-41. PubMed ID: 12893531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model.
    Sebastián JL; Muñoz S; Sancho M; Miranda JM
    Phys Med Biol; 2006 Dec; 51(23):6213-24. PubMed ID: 17110781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes.
    John K; Bär M
    Phys Biol; 2005 Jun; 2(2):123-32. PubMed ID: 16204864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of the kinetics of lipid probe redistribution between fusing cells.
    Kumenko DA; Frolov VA
    Membr Cell Biol; 1997; 10(5):593-600. PubMed ID: 9225263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled transport processes in responding membranes: the case of a single gradient.
    Aberg C; Wennerström H
    Phys Chem Chem Phys; 2009 Oct; 11(40):9075-81. PubMed ID: 19812827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically induced phospholipid translocation across biological membranes.
    Gurtovenko AA; Onike OI; Anwar J
    Langmuir; 2008 Sep; 24(17):9656-60. PubMed ID: 18680319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanisms of lipid-protein rearrangements during viral infection.
    Chizmadzhev YA
    Bioelectrochemistry; 2004 Jun; 63(1-2):129-36. PubMed ID: 15110263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical model for translocation of structured polypeptide chains through nanopores.
    Ammenti A; Cecconi F; Marini Bettolo Marconi U; Vulpiani A
    J Phys Chem B; 2009 Jul; 113(30):10348-56. PubMed ID: 19572676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of alpha-tocopherol in membrane models: probing the kinetics of vitamin E antioxidant action by fluorescence in real time.
    Gramlich G; Zhang J; Nau WM
    J Am Chem Soc; 2004 May; 126(17):5482-92. PubMed ID: 15113220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane fluidity of blood cells.
    Hollán S
    Haematologia (Budap); 1996; 27(3):109-27. PubMed ID: 14653448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, data analysis, and simulation of in vitro drug transport kinetic experiments using a mechanistic in vitro model.
    Poirier A; Lavé T; Portmann R; Brun ME; Senner F; Kansy M; Grimm HP; Funk C
    Drug Metab Dispos; 2008 Dec; 36(12):2434-44. PubMed ID: 18809732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic permeability in a molecular dynamics simulation of water transport through a single-occupancy pore.
    Kalko SG; Hernández JA; Grigera JR; Fischbarg J
    Biochim Biophys Acta; 1995 Dec; 1240(2):159-66. PubMed ID: 8541287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.