These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 10074508)
21. Molecular epidemiology of Corynebacterium pseudotuberculosis isolated from horses in California. Haas DJ; Dorneles EM; Spier SJ; Carroll SP; Edman J; Azevedo VA; Heinemann MB; Lage AP Infect Genet Evol; 2017 Apr; 49():186-194. PubMed ID: 27979735 [TBL] [Abstract][Full Text] [Related]
22. Dangel A; Berger A; Rau J; Eisenberg T; Kämpfer P; Margos G; Contzen M; Busse HJ; Konrad R; Peters M; Sting R; Sing A Int J Syst Evol Microbiol; 2020 Jun; 70(6):3614-3624. PubMed ID: 32368999 [TBL] [Abstract][Full Text] [Related]
23. Phospholipase D activity of Corynebacterium pseudotuberculosis (Corynebacterium ovis) and Corynebacterium ulcerans, a distinctive marker within the genus Corynebacterium. Barksdale L; Linder R; Sulea IT; Pollice M J Clin Microbiol; 1981 Feb; 13(2):335-43. PubMed ID: 7204550 [TBL] [Abstract][Full Text] [Related]
24. Prevalence and types of bacteria associated with subclinical mastitis in Bloemfontein dairy herds. Swartz R; Jooste PJ; Novello JC J S Afr Vet Assoc; 1984 Jun; 55(2):61-4. PubMed ID: 6492054 [TBL] [Abstract][Full Text] [Related]
25. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. Tenhagen BA; Köster G; Wallmann J; Heuwieser W J Dairy Sci; 2006 Jul; 89(7):2542-51. PubMed ID: 16772573 [TBL] [Abstract][Full Text] [Related]
26. Identification of the emerging skin pathogen Corynebacterium amycolatum using PCR-amplification of the essential divIVA gene as a target. Letek M; Ordóñez E; Fernández-Natal I; Gil JA; Mateos LM FEMS Microbiol Lett; 2006 Dec; 265(2):256-63. PubMed ID: 17147766 [TBL] [Abstract][Full Text] [Related]
28. Heterogeneity within Corynebacterium minutissimum strains is explained by misidentified Corynebacterium amycolatum strains. Zinkernagel AS; von Graevenitz A; Funke G Am J Clin Pathol; 1996 Sep; 106(3):378-83. PubMed ID: 8816598 [TBL] [Abstract][Full Text] [Related]
29. [Biochemical properties of Corynebacterium amycolatum strains]. Zalas P; Mikucka A; Gospodarek E Med Dosw Mikrobiol; 2004; 56(2):147-54. PubMed ID: 15544086 [TBL] [Abstract][Full Text] [Related]
30. Corynebacterium ulcerans and Corynebacterium pseudotuberculosis responses to DNA probes derived from corynephage beta and Corynebacterium diphtheriae. Groman N; Schiller J; Russell J Infect Immun; 1984 Aug; 45(2):511-7. PubMed ID: 6086530 [TBL] [Abstract][Full Text] [Related]
31. Rapid microbiochemical identification of Corynebacterium diphtheriae and other medically important corynebacteria. Thompson JS; Gates-Davis DR; Yong DC J Clin Microbiol; 1983 Oct; 18(4):926-9. PubMed ID: 6355166 [TBL] [Abstract][Full Text] [Related]
32. Susceptibilities of Corynebacterium bovis and Corynebacterium amylocolatum isolates from bovine mammary glands to 15 antimicrobial agents. Watts JL; Rossbach S Antimicrob Agents Chemother; 2000 Dec; 44(12):3476-7. PubMed ID: 11083663 [TBL] [Abstract][Full Text] [Related]
33. Experimental infection of lactating bovine mammary glands with Streptococcus uberis in quarters colonized by Corynebacterium bovis. Doane RM; Oliver SP; Walker RD; Shull EP Am J Vet Res; 1987 May; 48(5):749-54. PubMed ID: 3592374 [TBL] [Abstract][Full Text] [Related]
34. Phylogenetic studies on Corynebacterium bovis isolated from bovine mammary glands. Watts JL; Lowery DE; Teel JF; Ditto C; Horng JS; Rossbach S J Dairy Sci; 2001 Nov; 84(11):2419-23. PubMed ID: 11768082 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Vaneechoutte M; Riegel P; de Briel D; Monteil H; Verschraegen G; De Rouck A; Claeys G Res Microbiol; 1995 Oct; 146(8):633-41. PubMed ID: 8584787 [TBL] [Abstract][Full Text] [Related]
36. Genetic differences between nitrate-negative and nitrate-positive C. pseudotuberculosis strains using restriction fragment length polymorphisms. Sutherland SS; Hart RA; Buller NB Vet Microbiol; 1996 Mar; 49(1-2):1-9. PubMed ID: 8861638 [TBL] [Abstract][Full Text] [Related]
37. Development, validation and implementation of a quadruplex real-time PCR assay for identification of potentially toxigenic corynebacteria. De Zoysa A; Efstratiou A; Mann G; Harrison TG; Fry NK J Med Microbiol; 2016 Dec; 65(12):1521-1527. PubMed ID: 27902437 [TBL] [Abstract][Full Text] [Related]
38. Characteristics of dairy cows during episodes of bacteriologically negative clinical mastitis or mastitis caused by Corynebacterium spp. Morin DE; Constable PD J Am Vet Med Assoc; 1998 Sep; 213(6):855-61. PubMed ID: 9743728 [TBL] [Abstract][Full Text] [Related]
39. Corynebacterium freneyi sp. nov., alpha-glucosidase-positive strains related to Corynebacterium xerosis. Renaud FN; Aubel D; Riegel P; Meugnier H; Bollet C Int J Syst Evol Microbiol; 2001 Sep; 51(Pt 5):1723-1728. PubMed ID: 11594602 [TBL] [Abstract][Full Text] [Related]
40. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. Taponen S; Liski E; Heikkilä AM; Pyörälä S J Dairy Sci; 2017 Jan; 100(1):493-503. PubMed ID: 28341052 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]