BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 10074948)

  • 1. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot.
    Su L; Chen L; Egli M; Berger JM; Rich A
    Nat Struct Biol; 1999 Mar; 6(3):285-92. PubMed ID: 10074948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot.
    Nixon PL; Giedroc DP
    J Mol Biol; 2000 Feb; 296(2):659-71. PubMed ID: 10669615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif.
    Pallan PS; Marshall WS; Harp J; Jewett FC; Wawrzak Z; Brown BA; Rich A; Egli M
    Biochemistry; 2005 Aug; 44(34):11315-22. PubMed ID: 16114868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting.
    Cornish PV; Hennig M; Giedroc DP
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12694-9. PubMed ID: 16123125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot.
    Nixon PL; Rangan A; Kim YG; Rich A; Hoffman DW; Hennig M; Giedroc DP
    J Mol Biol; 2002 Sep; 322(3):621-33. PubMed ID: 12225754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Footprinting analysis of BWYV pseudoknot-ribosome complexes.
    Mazauric MH; Leroy JL; Visscher K; Yoshizawa S; Fourmy D
    RNA; 2009 Sep; 15(9):1775-86. PubMed ID: 19625386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae.
    Nixon PL; Cornish PV; Suram SV; Giedroc DP
    Biochemistry; 2002 Aug; 41(34):10665-74. PubMed ID: 12186552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal ions and flexibility in a viral RNA pseudoknot at atomic resolution.
    Egli M; Minasov G; Su L; Rich A
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4302-7. PubMed ID: 11904368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency.
    Kim YG; Su L; Maas S; O'Neill A; Rich A
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14234-9. PubMed ID: 10588689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-RNA interactions in the RNA pseudoknot of a ribosomal frameshifting site: molecular modeling studies.
    Le SY; Chen JH; Pattabiraman N; Maizel JV
    J Biomol Struct Dyn; 1998 Aug; 16(1):1-11. PubMed ID: 9745889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting.
    Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA
    J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.
    Chen G; Chang KY; Chou MY; Bustamante C; Tinoco I
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12706-11. PubMed ID: 19628688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pairwise coupling analysis of helical junction hydrogen bonding interactions in luteoviral RNA pseudoknots.
    Cornish PV; Giedroc DP
    Biochemistry; 2006 Sep; 45(37):11162-71. PubMed ID: 16964977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical unfolding of the beet western yellow virus -1 frameshift signal.
    White KH; Orzechowski M; Fourmy D; Visscher K
    J Am Chem Soc; 2011 Jun; 133(25):9775-82. PubMed ID: 21598975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical.
    Cornish PV; Stammler SN; Giedroc DP
    RNA; 2006 Nov; 12(11):1959-69. PubMed ID: 17000902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1.
    Sung D; Kang H
    Nucleic Acids Res; 1998 Mar; 26(6):1369-72. PubMed ID: 9490779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components.
    Yang L; Toh DK; Krishna MS; Zhong Z; Liu Y; Wang S; Gong Y; Chen G
    Biochemistry; 2020 Nov; 59(46):4429-4438. PubMed ID: 33166472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local structural and environmental factors define the efficiency of an RNA pseudoknot involved in programmed ribosomal frameshift process.
    Gupta A; Bansal M
    J Phys Chem B; 2014 Oct; 118(41):11905-20. PubMed ID: 25226454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.