These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 10075064)
1. Immediate application of positive-end expiratory pressure is more effective than delayed positive-end expiratory pressure to reduce extravascular lung water. Ruiz-Bailén M; Fernández-Mondéjar E; Hurtado-Ruiz B; Colmenero-Ruiz M; Rivera-Fernández R; Guerrero-López F; Vázquez-Mata G Crit Care Med; 1999 Feb; 27(2):380-4. PubMed ID: 10075064 [TBL] [Abstract][Full Text] [Related]
2. Ventilation with positive end-expiratory pressure reduces extravascular lung water and increases lymphatic flow in hydrostatic pulmonary edema. Fernández Mondéjar E; Vazquez Mata G; Cárdenas A; Mansilla A; Cantalejo F; Rivera R Crit Care Med; 1996 Sep; 24(9):1562-7. PubMed ID: 8797632 [TBL] [Abstract][Full Text] [Related]
3. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Colmenero-Ruiz M; Fernández-Mondéjar E; Fernández-Sacristán MA; Rivera-Fernández R; Vazquez-Mata G Am J Respir Crit Care Med; 1997 Mar; 155(3):964-70. PubMed ID: 9117033 [TBL] [Abstract][Full Text] [Related]
4. Effect of positive end-expiratory pressure on extravascular lung water and cardiopulmonary function in dogs with experimental severe hydrostatic pulmonary edema. Hirakawa A; Sakamoto H; Shimizu R J Vet Med Sci; 1996 Apr; 58(4):349-54. PubMed ID: 8741268 [TBL] [Abstract][Full Text] [Related]
5. [Effect of positive end-expiratory pressure on respiration and hemodynamics in dogs with pulmonary edema caused by increased membrane permeability]. Kato M; Otsuki M; Wang LQ; Kawamae K; Tase C; Okuaki A Masui; 1998 Jan; 47(1):9-21. PubMed ID: 9492493 [TBL] [Abstract][Full Text] [Related]
6. The effect of positive end-expiratory pressure during partial liquid ventilation in acute lung injury in piglets. Zobel G; Rödl S; Urlesberger B; Dacar D; Trafojer U; Trantina A Crit Care Med; 1999 Sep; 27(9):1934-9. PubMed ID: 10507621 [TBL] [Abstract][Full Text] [Related]
8. Effect of positive-end expiratory pressure on accuracy of thermal-dye measurements of lung water. Enderson BL; Rice C; Moss GS J Surg Res; 1985 Mar; 38(3):224-30. PubMed ID: 3884898 [TBL] [Abstract][Full Text] [Related]
9. Pulmonary epithelial permeability and gas exchange: a comparison of inverse ratio ventilation and conventional mechanical ventilation in oleic acid-induced lung injury in rabbits. Ludwigs U; Philip A Chest; 1998 Feb; 113(2):459-66. PubMed ID: 9498967 [TBL] [Abstract][Full Text] [Related]
10. Does PEEP facilitate the resolution of extravascular lung water after experimental hydrostatic pulmonary oedema? Blomqvist H; Wickerts CJ; Berg B; Frostell C; Jolin A; Hedenstierna G Eur Respir J; 1991 Oct; 4(9):1053-9. PubMed ID: 1756838 [TBL] [Abstract][Full Text] [Related]
11. Reduction in pulmonary blood volume during positive end-expiratory pressure. Slutsky RA J Surg Res; 1983 Sep; 35(3):181-7. PubMed ID: 6350709 [TBL] [Abstract][Full Text] [Related]
12. Effect of a catecholamine-induced increase in cardiac output on extravascular lung water. García-Delgado M; Colmenero-Ruiz M; Fernández-Sacristán MA; Rus-Mansilla C; Fernández-Mondéjar E Crit Care Med; 2001 May; 29(5):931-5. PubMed ID: 11378599 [TBL] [Abstract][Full Text] [Related]
13. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Nahum A; Hoyt J; Schmitz L; Moody J; Shapiro R; Marini JJ Crit Care Med; 1997 Oct; 25(10):1733-43. PubMed ID: 9377891 [TBL] [Abstract][Full Text] [Related]
14. [Change of extravascular lung water in sheep with early acute respiratory distress syndrome]. Qiu HB; Sun HM; Yang Y; Xu HY; Chen YM Zhonghua Jie He He Hu Xi Za Zhi; 2004 Aug; 27(8):537-41. PubMed ID: 15388003 [TBL] [Abstract][Full Text] [Related]
15. Abdomen release in prone position does not improve oxygenation in an experimental model of acute lung injury. Colmenero-Ruiz M; Pola-Gallego de Guzmán D; Jiménez-Quintana MM; Fernández-Mondejar E Intensive Care Med; 2001 Mar; 27(3):566-73. PubMed ID: 11355127 [TBL] [Abstract][Full Text] [Related]
16. Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Broccard AF; Shapiro RS; Schmitz LL; Ravenscraft SA; Marini JJ Crit Care Med; 1997 Jan; 25(1):16-27. PubMed ID: 8989171 [TBL] [Abstract][Full Text] [Related]
17. Effect of negative-pressure ventilation on lung water in permeability pulmonary edema. Skaburskis M; Michel RP; Gatensby A; Zidulka A J Appl Physiol (1985); 1989 May; 66(5):2223-30. PubMed ID: 2501278 [TBL] [Abstract][Full Text] [Related]
18. Hemodynamic and respiratory changes during lung recruitment and descending optimal positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Toth I; Leiner T; Mikor A; Szakmany T; Bogar L; Molnar Z Crit Care Med; 2007 Mar; 35(3):787-93. PubMed ID: 17255855 [TBL] [Abstract][Full Text] [Related]
19. Continuous negative extrathoracic pressure ventilation, lung water volume, and central blood volume. Studies in dogs with pulmonary edema induced by oleic acid. Kudoh I; Andoh T; Doi H; Kaneko K; Okutsu Y; Okumura F Chest; 1992 Feb; 101(2):530-3. PubMed ID: 1735284 [TBL] [Abstract][Full Text] [Related]
20. Effect of tracheal gas insufflation on gas exchange in canine oleic acid-induced lung injury. Nahum A; Chandra A; Niknam J; Ravenscraft SA; Adams AB; Marini JJ Crit Care Med; 1995 Feb; 23(2):348-56. PubMed ID: 7867359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]