BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 10076038)

  • 1. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers.
    Huang J; Buboltz JT; Feigenson GW
    Biochim Biophys Acta; 1999 Feb; 1417(1):89-100. PubMed ID: 10076038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism.
    Epand RM; Epand RF; Hughes DW; Sayer BG; Borochov N; Bach D; Wachtel E
    Chem Phys Lipids; 2005 May; 135(1):39-53. PubMed ID: 15854624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers.
    Huang J; Feigenson GW
    Biophys J; 1999 Apr; 76(4):2142-57. PubMed ID: 10096908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for superlattice arrangements in fluid phosphatidylcholine/phosphatidylethanolamine bilayers.
    Cheng KH; Ruonala M; Virtanen J; Somerharju P
    Biophys J; 1997 Oct; 73(4):1967-76. PubMed ID: 9336192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitation of cholesterol incorporation into extruded lipid bilayers.
    Ibarguren M; Alonso A; Tenchov BG; Goñi FM
    Biochim Biophys Acta; 2010 Sep; 1798(9):1735-8. PubMed ID: 20537979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cholesterol on the structural transitions induced by diacylglycerol in phosphatidylcholine and phosphatidylethanolamine bilayer systems.
    Coorssen JR; Rand RP
    Biochem Cell Biol; 1990 Jan; 68(1):65-9. PubMed ID: 2350502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of cholesterol on the structure and dynamic properties of unsaturated phospholipid bilayers].
    Kornilov VV; Rabinovich AL; Balabaev NK; Bessonov VV
    Biofizika; 2008; 53(1):84-92. PubMed ID: 18488506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers.
    Ali MR; Cheng KH; Huang J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5372-7. PubMed ID: 17372226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit.
    Parker A; Miles K; Cheng KH; Huang J
    Biophys J; 2004 Mar; 86(3):1532-44. PubMed ID: 14990480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures.
    Ali MR; Cheng KH; Huang J
    Biochemistry; 2006 Oct; 45(41):12629-38. PubMed ID: 17029417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biophys J; 2000 Oct; 79(4):2056-65. PubMed ID: 11023909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers.
    McMullen TP; Lewis RN; McElhaney RN
    Biophys J; 1994 Mar; 66(3 Pt 1):741-52. PubMed ID: 8011906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):119-34. PubMed ID: 9889344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bilayer melting transition in lung surfactant bilayers: the role of cholesterol.
    Larsson M; Larsson K; Nylander T; Wollmer P
    Eur Biophys J; 2003 Feb; 31(8):633-6. PubMed ID: 12582823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol solubility in mixed DMPE/DMPC bilayers as determined by small angle X-ray scattering.
    Bach D; Wachtel E
    Biophys Chem; 2023 Jun; 297():107014. PubMed ID: 37027969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.
    Xiang TX; Anderson BD
    Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro determination of the solubility limit of cholesterol in phospholipid bilayers.
    Epand RM; Bach D; Wachtel E
    Chem Phys Lipids; 2016 Sep; 199():3-10. PubMed ID: 27370110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol supports headgroup superlattice domain formation in fluid phospholipid/cholesterol bilayers.
    Cannon B; Lewis A; Metze J; Thiagarajan V; Vaughn MW; Somerharju P; Virtanen J; Huang J; Cheng KH
    J Phys Chem B; 2006 Mar; 110(12):6339-50. PubMed ID: 16553452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.