These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 1007632)
1. Acute combined effects of HCN and CO, with the use of combustion products from PAN (polyacrylonitrile)--gauze mistures. Yamamoto K Z Rechtsmed; 1976; 78(4):303-11. PubMed ID: 1007632 [TBL] [Abstract][Full Text] [Related]
2. Acute toxicity of the combustion products from various kinds of fibers. Yamamoto K Z Rechtsmed; 1975 Sep; 76(1):11-26. PubMed ID: 1217203 [TBL] [Abstract][Full Text] [Related]
3. Exposures to carbon monoxide, hydrogen cyanide and their mixtures: interrelationship between gas exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide in rats. Chaturvedi AK; Sanders DC; Endecott BR; Ritter RM J Appl Toxicol; 1995; 15(5):357-63. PubMed ID: 8666718 [TBL] [Abstract][Full Text] [Related]
4. Cyanide, carboxyhemoglobin and blood acid-base state in animals exposed to combustion products of various combinations of acrylic fiber and gauze. Okae M; Yamamoto K; Yamamoto Y; Fukui Y Forensic Sci Int; 1989 Jul; 42(1-2):33-41. PubMed ID: 2759522 [TBL] [Abstract][Full Text] [Related]
5. Intoxication by cyanide in fires: a study in monkeys using polyacrylonitrile. Purser DA; Grimshaw P; Berrill KR Arch Environ Health; 1984; 39(6):394-400. PubMed ID: 6098227 [TBL] [Abstract][Full Text] [Related]
6. A study on the combined action of CO and HCN in terms of concentration-time products. Yamamoto K; Kuwahara C Z Rechtsmed; 1981; 86(4):287-94. PubMed ID: 6266175 [TBL] [Abstract][Full Text] [Related]
7. New approaches to toxicity: a seven-gas predictive model and toxicant suppressants. Levin BC Drug Chem Toxicol; 1997 Nov; 20(4):271-80. PubMed ID: 9433656 [TBL] [Abstract][Full Text] [Related]
8. Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires. Levin BC; Paabo M; Gurman JL; Harris SE Fundam Appl Toxicol; 1987 Aug; 9(2):236-50. PubMed ID: 2820822 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen cyanide and carbon monoxide in blood of convicted dead in a polyurethane combustion: a proposition for the data analysis. Ferrari LA; Arado MG; Giannuzzi L; Mastrantonio G; Guatelli MA Forensic Sci Int; 2001 Sep; 121(1-2):140-3. PubMed ID: 11516899 [TBL] [Abstract][Full Text] [Related]
10. Combustion products from various kinds of fibers: toxicological hazards from smoke exposure. Betol E; Mari F; Orzalesi G; Volpato I Forensic Sci Int; 1983; 22(2-3):111-6. PubMed ID: 6315551 [TBL] [Abstract][Full Text] [Related]
11. Toxic Blood Hydrogen Cyanide Concentration as a Vital Sign of a Deceased Room Fire Victim-Case Report. Tabian D; Drochioiu G; Damian SI; Girlescu N; Toma Gradinaru O; Toma SI; Bulgaru Iliescu D Toxics; 2021 Feb; 9(2):. PubMed ID: 33669200 [TBL] [Abstract][Full Text] [Related]
12. Swedish forensic data 1992-2009 suggest hydrogen cyanide as an important cause of death in fire victims. Stamyr K; Thelander G; Ernstgård L; Ahlner J; Johanson G Inhal Toxicol; 2012 Feb; 24(3):194-9. PubMed ID: 22369195 [TBL] [Abstract][Full Text] [Related]
13. Assessment of carboxyhemoglobin, hydrogen cyanide and methemoglobin in fire victims: a novel approach. Ferrari LA; Giannuzzi L Forensic Sci Int; 2015 Nov; 256():46-52. PubMed ID: 26426954 [TBL] [Abstract][Full Text] [Related]
14. Assessment of chemical asphyxia caused by toxic gases generated from rigid polyurethane foam (RPUF) fires. Son MH; Kim Y; Jo YH; Kwon M Forensic Sci Int; 2021 Nov; 328():111011. PubMed ID: 34571246 [TBL] [Abstract][Full Text] [Related]
15. Prevalence of hydrogen cyanide and carboxyhaemoglobin in victims of smoke inhalation during enclosed-space fires: a combined toxicological risk. Grabowska T; Skowronek R; Nowicka J; Sybirska H Clin Toxicol (Phila); 2012 Sep; 50(8):759-63. PubMed ID: 22882141 [TBL] [Abstract][Full Text] [Related]
16. In vitro absorption of atmospheric carbon monoxide and hydrogen cyanide in undisturbed pooled blood. Thoren TM; Thompson KS; Cardona PS; Chaturvedi AK; Canfield DV J Anal Toxicol; 2013 May; 37(4):203-7. PubMed ID: 23482499 [TBL] [Abstract][Full Text] [Related]
17. Risk assessment in combustion toxicology: Should carbon dioxide be recognized as a modifier of toxicity or separate toxicological entity? Pauluhn J Toxicol Lett; 2016 Nov; 262():142-152. PubMed ID: 27664840 [TBL] [Abstract][Full Text] [Related]
18. Production and systemic absorption of toxic byproducts of tissue combustion during laparoscopic surgery. Wu JS; Luttmann DR; Meininger TA; Soper NJ Surg Endosc; 1997 Nov; 11(11):1075-9. PubMed ID: 9348377 [TBL] [Abstract][Full Text] [Related]
19. New research avenues in toxicology: 7-gas N-Gas Model, toxicant suppressants, and genetic toxicology. Levin BC Toxicology; 1996 Dec; 115(1-3):89-106. PubMed ID: 9016743 [TBL] [Abstract][Full Text] [Related]
20. Diffusion of Carbon Monoxide and Hydrogen Cyanide to Muscles and Blood-An Experimental Study. Baj J; Buszewicz G; Przygodzka D; Forma A; Flieger J; Teresiński G Toxics; 2022 Nov; 10(11):. PubMed ID: 36422915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]