These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10076816)

  • 1. Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism.
    Norell MC; Andersson HS; Nicholls IA
    J Mol Recognit; 1998; 11(1-6):98-102. PubMed ID: 10076816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine.
    Puoci F; Iemma F; Muzzalupo R; Spizzirri UG; Trombino S; Cassano R; Picci N
    Macromol Biosci; 2004 Jan; 4(1):22-6. PubMed ID: 15468283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow.
    Ali M; Horikawa S; Venkatesh S; Saha J; Hong JW; Byrne ME
    J Control Release; 2007 Dec; 124(3):154-62. PubMed ID: 17964678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and evaluation of a selective molecularly imprinted polymer for the contraceptive drug levonorgestrel.
    Khorrami AR; Mehrseresht S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 May; 867(2):264-9. PubMed ID: 18456579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube.
    Lee HY; Kim BS
    Biosens Bioelectron; 2009 Nov; 25(3):587-91. PubMed ID: 19394212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers.
    He JF; Zhu QH; Deng QY
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1297-305. PubMed ID: 17142092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rational use of hydrophobic effect-based recognition in molecularly imprinted polymers.
    Piletsky SA; Andersson HS; Nicholls IA
    J Mol Recognit; 1998; 11(1-6):94-7. PubMed ID: 10076815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity of polymer solution phase and other factors controlling the dissolution of theophylline microspheres prepared by the emulsion solvent evaporation method.
    Obeidat WM; Price JC
    J Microencapsul; 2003; 20(1):57-65. PubMed ID: 12519702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotemplating for two-dimensional molecular imprinting.
    Voicu R; Faid K; Farah AA; Bensebaa F; Barjovanu R; Py C; Tao Y
    Langmuir; 2007 May; 23(10):5452-8. PubMed ID: 17407335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo sustained-release characteristics of theophylline matrix tablets and novel cluster tablets.
    Hayashi T; Kanbe H; Okada M; Kawase I; Ikeda Y; Onuki Y; Kaneko T; Sonobe T
    Int J Pharm; 2007 Aug; 341(1-2):105-13. PubMed ID: 17512147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of polymerization temperature on the molecular recognition of imprinted polymers.
    Lu Y; Li C; Wang X; Sun P; Xing X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 May; 804(1):53-9. PubMed ID: 15093159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis.
    Urraca JL; Marazuela MD; Merino ER; Orellana G; Moreno-Bondi MC
    J Chromatogr A; 2006 May; 1116(1-2):127-34. PubMed ID: 16595138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of nicotinamide-based molecularly imprinted microspheres and in vitro controlled release studies.
    Del Sole R; Lazzoi MR; Vasapollo G
    Drug Deliv; 2010 Apr; 17(3):130-7. PubMed ID: 20163194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of template complexation and ligand binding conditions on recognition in bupivacaine molecularly imprinted polymers.
    Karlsson JG; Karlsson B; Andersson LI; Nicholls IA
    Analyst; 2004 May; 129(5):456-62. PubMed ID: 15116240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel chiral recognition elements for molecularly imprinted polymer preparation.
    Knutsson M; Andersson HS; Nicholls IA
    J Mol Recognit; 1998; 11(1-6):87-90. PubMed ID: 10076813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HPLC analysis of theophylline: bioequivalence study of two sustained-release formulations at steady state.
    Mazzei M; Sottofattori E; Balbi A; Bottino GB
    Farmaco; 1992 May; 47(5 Suppl):769-77. PubMed ID: 1524625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly imprinted drug delivery systems.
    Cunliffe D; Kirby A; Alexander C
    Adv Drug Deliv Rev; 2005 Dec; 57(12):1836-53. PubMed ID: 16226341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vivo performance of theophylline microcapsules.
    Nixon JR; Meleka MR
    J Microencapsul; 1984; 1(1):65-72. PubMed ID: 6336516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest.
    Ciardelli G; Cioni B; Cristallini C; Barbani N; Silvestri D; Giusti P
    Biosens Bioelectron; 2004 Dec; 20(6):1083-90. PubMed ID: 15556352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.