BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 10076830)

  • 1. Hyphenated thermal field flow fractionation--capillary electrophoresis.
    Semenov SN
    J Mol Recognit; 1998; 11(1-6):157-62. PubMed ID: 10076830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample stacking in CZE using dynamic thermal junctions I. Analytes with low dpKa/dT crossing a single thermally induced pH junction in a BGE with high dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1501-9. PubMed ID: 19350541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing.
    Balss KM; Vreeland WN; Phinney KW; Ross D
    Anal Chem; 2004 Dec; 76(24):7243-9. PubMed ID: 15595865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.
    Petersen NJ; Nikolajsen RP; Mogensen KB; Kutter JP
    Electrophoresis; 2004 Jan; 25(2):253-69. PubMed ID: 14743478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification and evaluation of Joule heating in on-chip capillary electrophoresis.
    Swinney K; Bornhop DJ
    Electrophoresis; 2002 Feb; 23(4):613-20. PubMed ID: 11870773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of peptides by capillary electrophoresis.
    Scriba GK; Psurek A
    Methods Mol Biol; 2008; 384():483-506. PubMed ID: 18392581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonaqueous capillary electrophoresis with alcoholic background electrolytes: separation efficiency under high electrical field strengths.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    Electrophoresis; 2002 Feb; 23(3):393-9. PubMed ID: 11870738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp.
    Xuan X; Hu G; Li D
    Electrophoresis; 2006 Aug; 27(16):3171-80. PubMed ID: 16850504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CE way of thinking: "all is relative!".
    Schmitt-Kopplin P; Fekete A
    Methods Mol Biol; 2008; 384():611-29. PubMed ID: 18392586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample stacking in CZE using dynamic thermal junctions II: analytes with high dpKa/dT crossing a single thermal junction in a BGE with low dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1510-5. PubMed ID: 19350542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the reproducibility in capillary electrophoresis by incorporating current drift in mobility and peak area calculations.
    Petersen NJ; Hansen SH
    Electrophoresis; 2012 Mar; 33(6):1021-31. PubMed ID: 22528422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step concentration of analytes based on dynamic change in pH in capillary zone electrophoresis.
    Wei W; Xue G; Yeung ES
    Anal Chem; 2002 Mar; 74(5):934-40. PubMed ID: 11924995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoresis in the presence of gradients: I. Viscosity gradients.
    Guillouzic S; McCormick LC; Slater GW
    Electrophoresis; 2002 Jun; 23(12):1822-32. PubMed ID: 12116125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary zone electrophoresis with optimized temperature control for studying thermal denaturation of proteins at various pH.
    Rochu D; Ducret G; Ribes F; Vanin S; Masson P
    Electrophoresis; 1999 Jun; 20(7):1586-94. PubMed ID: 10424484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules.
    Dukhin AS; Dukhin SS
    Electrophoresis; 2005 Jun; 26(11):2149-53. PubMed ID: 15852350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature difference between the cooled and the noncooled parts of an electrolyte in capillary electrophoresis.
    Musheev MU; Filiptsev Y; Krylov SN
    Anal Chem; 2010 Oct; 82(20):8692-5. PubMed ID: 20853855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and optimization of the chiral selectivity of basic analytes in chiral capillary electrophoresis with negatively charged cyclodextrins using electrochemical detection.
    Yang WC; Yu AM; Yu XD; Chen HY
    Electrophoresis; 2001 Jun; 22(10):2025-31. PubMed ID: 11465502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.