These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10077321)
21. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Hoogerwerf WA; Hellmich HL; Cornélissen G; Halberg F; Shahinian VB; Bostwick J; Savidge TC; Cassone VM Gastroenterology; 2007 Oct; 133(4):1250-60. PubMed ID: 17919497 [TBL] [Abstract][Full Text] [Related]
22. Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod. Sumová A; Jác M; Sládek M; Sauman I; Illnerová H J Biol Rhythms; 2003 Apr; 18(2):134-44. PubMed ID: 12693868 [TBL] [Abstract][Full Text] [Related]
23. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Oishi K; Shirai H; Ishida N Biochem J; 2005 Mar; 386(Pt 3):575-81. PubMed ID: 15500444 [TBL] [Abstract][Full Text] [Related]
24. Clock gene expression in the submandibular glands. Furukawa M; Kawamoto T; Noshiro M; Honda KK; Sakai M; Fujimoto K; Honma S; Honma K; Hamada T; Kato Y J Dent Res; 2005 Dec; 84(12):1193-7. PubMed ID: 16304453 [TBL] [Abstract][Full Text] [Related]
25. Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Yan L; Takekida S; Shigeyoshi Y; Okamura H Neuroscience; 1999; 94(1):141-50. PubMed ID: 10613504 [TBL] [Abstract][Full Text] [Related]
26. Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling. Jilg A; Moek J; Weaver DR; Korf HW; Stehle JH; von Gall C Eur J Neurosci; 2005 Dec; 22(11):2845-54. PubMed ID: 16324119 [TBL] [Abstract][Full Text] [Related]
27. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Canaple L; Rambaud J; Dkhissi-Benyahya O; Rayet B; Tan NS; Michalik L; Delaunay F; Wahli W; Laudet V Mol Endocrinol; 2006 Aug; 20(8):1715-27. PubMed ID: 16556735 [TBL] [Abstract][Full Text] [Related]
28. The genetic basis of circadian behavior. Oster H Genes Brain Behav; 2006; 5 Suppl 2():73-9. PubMed ID: 16681802 [TBL] [Abstract][Full Text] [Related]
29. Aryl hydrocarbon receptor expression and activity in cerebellar granule neuroblasts: implications for development and dioxin neurotoxicity. Williamson MA; Gasiewicz TA; Opanashuk LA Toxicol Sci; 2005 Feb; 83(2):340-8. PubMed ID: 15537747 [TBL] [Abstract][Full Text] [Related]
30. Circadian and photic regulation of immediate-early gene expression in the hamster suprachiasmatic nucleus. Guido ME; Goguen D; De Guido L; Robertson HA; Rusak B Neuroscience; 1999 May; 90(2):555-71. PubMed ID: 10215159 [TBL] [Abstract][Full Text] [Related]
31. Insight into the circadian clock within rat colonic epithelial cells. Sládek M; Rybová M; Jindráková Z; Zemanová Z; Polidarová L; Mrnka L; O'Neill J; Pácha J; Sumová A Gastroenterology; 2007 Oct; 133(4):1240-9. PubMed ID: 17675004 [TBL] [Abstract][Full Text] [Related]
32. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Ghorbel MT; Coulson JM; Murphy D Mol Cell Neurosci; 2003 Mar; 22(3):396-404. PubMed ID: 12691740 [TBL] [Abstract][Full Text] [Related]
33. Structural basis for PAS domain heterodimerization in the basic helix--loop--helix-PAS transcription factor hypoxia-inducible factor. Erbel PJ; Card PB; Karakuzu O; Bruick RK; Gardner KH Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15504-9. PubMed ID: 14668441 [TBL] [Abstract][Full Text] [Related]
34. Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Steeves TD; King DP; Zhao Y; Sangoram AM; Du F; Bowcock AM; Moore RY; Takahashi JS Genomics; 1999 Apr; 57(2):189-200. PubMed ID: 10198158 [TBL] [Abstract][Full Text] [Related]
35. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Jin X; Shearman LP; Weaver DR; Zylka MJ; de Vries GJ; Reppert SM Cell; 1999 Jan; 96(1):57-68. PubMed ID: 9989497 [TBL] [Abstract][Full Text] [Related]
36. Developmental expression of clock genes in the Syrian hamster. Li X; Davis FC Brain Res Dev Brain Res; 2005 Aug; 158(1-2):31-40. PubMed ID: 15987658 [TBL] [Abstract][Full Text] [Related]
37. Antiphase oscillation of the left and right suprachiasmatic nuclei. de la Iglesia HO; Meyer J; Carpino A; Schwartz WJ Science; 2000 Oct; 290(5492):799-801. PubMed ID: 11052942 [TBL] [Abstract][Full Text] [Related]
38. Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: entrainable expression of mPer2 and BMAL1 mRNAs in the heart of Clock mutant mice on Jcl:ICR background. Oishi K; Miyazaki K; Ishida N Biochem Biophys Res Commun; 2002 Oct; 298(2):198-202. PubMed ID: 12387815 [TBL] [Abstract][Full Text] [Related]
39. Circadian rhythms. Clocks on the brain. Green CB; Menaker M Science; 2003 Jul; 301(5631):319-20. PubMed ID: 12843400 [No Abstract] [Full Text] [Related]
40. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions. Horikawa K; Minami Y; Iijima M; Akiyama M; Shibata S Neuroscience; 2005; 134(1):335-43. PubMed ID: 15961241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]