These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 10077440)
1. Pharmacokinetic drug interactions between ampiroxicam and sulfaphenazole in rats. Ogiso T; Iwaki M; Tanaka H; Kobayashi E; Tanino T; Sawada A; Uno S Biol Pharm Bull; 1999 Feb; 22(2):191-6. PubMed ID: 10077440 [TBL] [Abstract][Full Text] [Related]
2. Ampiroxicam, an anti-inflammatory agent which is a prodrug of piroxicam. Carty TJ; Marfat A; Moore PF; Falkner FC; Twomey TM; Weissman A Agents Actions; 1993 Jul; 39(3-4):157-65. PubMed ID: 8304243 [TBL] [Abstract][Full Text] [Related]
3. Quantitative prediction of in vivo drug-drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Kanamitsu S; Ito K; Sugiyama Y Pharm Res; 2000 Mar; 17(3):336-43. PubMed ID: 10801223 [TBL] [Abstract][Full Text] [Related]
4. Disposition of ampiroxicam, a prodrug of piroxicam, in man. Falkner FC; Twomey TM; Borgers AP; Garg D; Weidler D; Gerber N; Browder IW Xenobiotica; 1990 Jun; 20(6):645-52. PubMed ID: 2219958 [TBL] [Abstract][Full Text] [Related]
5. Prediction of in vivo drug-drug interactions between tolbutamide and various sulfonamides in humans based on in vitro experiments. Komatsu K; Ito K; Nakajima Y; Kanamitsu Si; Imaoka S; Funae Y; Green CE; Tyson CA; Shimada N; Sugiyama Y Drug Metab Dispos; 2000 Apr; 28(4):475-81. PubMed ID: 10725317 [TBL] [Abstract][Full Text] [Related]
6. Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9. Mancy A; Dijols S; Poli S; Guengerich P; Mansuy D Biochemistry; 1996 Dec; 35(50):16205-12. PubMed ID: 8973193 [TBL] [Abstract][Full Text] [Related]
7. The effect of multiple-dose, oral rifaximin on the pharmacokinetics of intravenous and oral midazolam in healthy volunteers. Pentikis HS; Connolly M; Trapnell CB; Forbes WP; Bettenhausen DK Pharmacotherapy; 2007 Oct; 27(10):1361-9. PubMed ID: 17896891 [TBL] [Abstract][Full Text] [Related]
8. Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Melet A; Assrir N; Jean P; Pilar Lopez-Garcia M; Marques-Soares C; Jaouen M; Dansette PM; Sari MA; Mansuy D Arch Biochem Biophys; 2003 Jan; 409(1):80-91. PubMed ID: 12464247 [TBL] [Abstract][Full Text] [Related]
9. Pharmacokinetics of a single dose of intravenous and oral meloxicam in red-tailed hawks (Buteo jamaicensis) and great horned owls (Bubo virginianus). Lacasse C; Gamble KC; Boothe DM J Avian Med Surg; 2013 Sep; 27(3):204-10. PubMed ID: 24344511 [TBL] [Abstract][Full Text] [Related]
10. Pharmacokinetic and pharmacodynamic interaction between nifedipine and metformin in rats: competitive inhibition for metabolism of nifedipine and metformin by each other via CYP isozymes. Choi YH; Lee MG Xenobiotica; 2012 May; 42(5):483-95. PubMed ID: 22416982 [TBL] [Abstract][Full Text] [Related]
11. Pharmacokinetics of meloxicam in adult goats: a comparative study of subcutaneous, oral and intravenous administration. Karademir U; Erdogan H; Boyacioglu M; Kum C; Sekkin S; Bilgen M N Z Vet J; 2016 May; 64(3):165-8. PubMed ID: 26612429 [TBL] [Abstract][Full Text] [Related]
12. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation. El-Habashy SE; Allam AN; El-Kamel AH Int J Nanomedicine; 2016; 11():2369-80. PubMed ID: 27307735 [TBL] [Abstract][Full Text] [Related]
13. [Pharmacodynamic and pharmacokinetic aspects of the non-inflammatory non-steroidal agent meloxicam in dogs]. Poulsen Nautrup B; Hörstermann D Dtsch Tierarztl Wochenschr; 1999 Mar; 106(3):94-100. PubMed ID: 10220944 [TBL] [Abstract][Full Text] [Related]
14. Pharmacokinetics of meloxicam after intravenous, intramuscular, and oral administration of a single dose to Hispaniolan Amazon parrots (Amazona ventralis). Molter CM; Court MH; Cole GA; Gagnon DJ; Hazarika S; Paul-Murphy JR Am J Vet Res; 2013 Mar; 74(3):375-80. PubMed ID: 23438111 [TBL] [Abstract][Full Text] [Related]
15. Oral pharmacokinetics of meloxicam in the rat using a high-performance liquid chromatography method in micro-whole-blood samples. Aguilar-Mariscal H; Patiño-Camacho SI; Rodríguez-Silverio J; Torres-López JE; Flores-Murrieta FJ Methods Find Exp Clin Pharmacol; 2007 Nov; 29(9):587-91. PubMed ID: 18193109 [TBL] [Abstract][Full Text] [Related]
16. Comparison of analgesic and anti-inflammatory activity of meloxicam gel with diclofenac and piroxicam gels in animal models: pharmacokinetic parameters after topical application. Gupta SK; Bansal P; Bhardwaj RK; Jaiswal J; Velpandian T Skin Pharmacol Appl Skin Physiol; 2002; 15(2):105-11. PubMed ID: 11867967 [TBL] [Abstract][Full Text] [Related]
17. Pharmacokinetic profiles of meloxicam in turtles (Trachemys scripta scripta) after single oral, intracoelomic and intramuscular administrations. Di Salvo A; Giorgi M; Catanzaro A; Deli G; della Rocca G J Vet Pharmacol Ther; 2016 Feb; 39(1):102-5. PubMed ID: 26789011 [TBL] [Abstract][Full Text] [Related]