BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 10077639)

  • 21. Pim-1 protein kinase is nuclear in Burkitt's lymphoma: nuclear localization is necessary for its biologic effects.
    Ionov Y; Le X; Tunquist BJ; Sweetenham J; Sachs T; Ryder J; Johnson T; Lilly MB; Kraft AS
    Anticancer Res; 2003; 23(1A):167-78. PubMed ID: 12680209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53.
    Yu ZK; Geyer RK; Maki CG
    Oncogene; 2000 Nov; 19(51):5892-7. PubMed ID: 11127820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of nuclear and cytoplasmic degradation of p53 in cells after stress.
    Joseph TW; Moll UM
    Methods Mol Biol; 2003; 234():211-7. PubMed ID: 12824534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation.
    Zhang Y; Xiong Y
    Science; 2001 Jun; 292(5523):1910-5. PubMed ID: 11397945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein.
    Dobbelstein M; Wienzek S; König C; Roth J
    Oncogene; 1999 Mar; 18(12):2101-6. PubMed ID: 10321734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of an aberrantly spliced form of HDMX in human tumors: a new mechanism for HDM2 stabilization.
    Giglio S; Mancini F; Gentiletti F; Sparaco G; Felicioni L; Barassi F; Martella C; Prodosmo A; Iacovelli S; Buttitta F; Farsetti A; Soddu S; Marchetti A; Sacchi A; Pontecorvi A; Moretti F
    Cancer Res; 2005 Nov; 65(21):9687-94. PubMed ID: 16266988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Jab1 induces the cytoplasmic localization and degradation of p53 in coordination with Hdm2.
    Oh W; Lee EW; Sung YH; Yang MR; Ghim J; Lee HW; Song J
    J Biol Chem; 2006 Jun; 281(25):17457-17465. PubMed ID: 16624822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription.
    Mirnezami AH; Campbell SJ; Darley M; Primrose JN; Johnson PW; Blaydes JP
    Curr Biol; 2003 Jul; 13(14):1234-9. PubMed ID: 12867035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2.
    Evans SC; Viswanathan M; Grier JD; Narayana M; El-Naggar AK; Lozano G
    Oncogene; 2001 Jul; 20(30):4041-9. PubMed ID: 11494132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HDM2 phosphorylation by MAPKAP kinase 2.
    Weber HO; Ludwig RL; Morrison D; Kotlyarov A; Gaestel M; Vousden KH
    Oncogene; 2005 Mar; 24(12):1965-72. PubMed ID: 15688025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleolar p14(ARF) overexpression in Reed-Sternberg cells in Hodgkin's lymphoma: absence of p14(ARF)/Hdm2 complexes is associated with expression of alternatively spliced Hdm2 transcripts.
    García JF; Villuendas R; Sánchez-Beato M; Sánchez-Aguilera A; Sánchez L; Prieto I; Piris MA
    Am J Pathol; 2002 Feb; 160(2):569-78. PubMed ID: 11839577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oncoprotein SS18-SSX1 promotes p53 ubiquitination and degradation by enhancing HDM2 stability.
    D'Arcy P; Maruwge W; Ryan BA; Brodin B
    Mol Cancer Res; 2008 Jan; 6(1):127-38. PubMed ID: 18234968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide-mediated inhibition of Hdm2-p53 binding.
    Schonhoff CM; Daou MC; Jones SN; Schiffer CA; Ross AH
    Biochemistry; 2002 Nov; 41(46):13570-4. PubMed ID: 12427017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus.
    Mayo LD; Donner DB
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11598-603. PubMed ID: 11504915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Requirement for HDM2 activity in the rapid degradation of p53 in neuroblastoma.
    Isaacs JS; Saito S; Neckers LM
    J Biol Chem; 2001 May; 276(21):18497-506. PubMed ID: 11279110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of p53 by Mdm2: fate is in the numbers.
    Shmueli A; Oren M
    Mol Cell; 2004 Jan; 13(1):4-5. PubMed ID: 14731389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53.
    Higashitsuji H; Higashitsuji H; Itoh K; Sakurai T; Nagao T; Sumitomo Y; Masuda T; Dawson S; Shimada Y; Mayer RJ; Fujita J
    Cancer Cell; 2005 Jul; 8(1):75-87. PubMed ID: 16023600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence.
    Kane SA; Fleener CA; Zhang YS; Davis LJ; Musselman AL; Huang PS
    Anal Biochem; 2000 Feb; 278(1):29-38. PubMed ID: 10640350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contribution of the acidic domain of MDM2 to p53 and MDM2 stability.
    Argentini M; Barboule N; Wasylyk B
    Oncogene; 2001 Mar; 20(11):1267-75. PubMed ID: 11313871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2.
    Meulmeester E; Maurice MM; Boutell C; Teunisse AF; Ovaa H; Abraham TE; Dirks RW; Jochemsen AG
    Mol Cell; 2005 May; 18(5):565-76. PubMed ID: 15916963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.