These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 10077819)

  • 1. Rhamnose lipids--biosynthesis, microbial production and application potential.
    Lang S; Wullbrandt D
    Appl Microbiol Biotechnol; 1999 Jan; 51(1):22-32. PubMed ID: 10077819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3.
    Patel RM; Desai AJ
    J Basic Microbiol; 1997; 37(4):281-6. PubMed ID: 9323868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent.
    Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B
    Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant.
    Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G
    FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy Vacuum Gas Oil Upregulates the Rhamnosyltransferases and Quorum Sensing Cascades of Rhamnolipids Biosynthesis in
    Alkhalaf SA; Ramadan AR; Obuekwe C; El Nayal AM; Abotalib N; Ismail W
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pantoea sp. P37 as a novel nonpathogenic host for the heterologous production of rhamnolipids.
    Nawrath MM; Ottenheim C; Wu JC; Zimmermann W
    Microbiologyopen; 2020 May; 9(5):e1019. PubMed ID: 32113194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of rhamnolipid biosurfactants.
    Ochsner UA; Hembach T; Fiechter A
    Adv Biochem Eng Biotechnol; 1996; 53():89-118. PubMed ID: 8578973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG
    Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F; Shi R; Ma F; Han S; Zhang Y
    Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application.
    Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F
    Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste.
    Nitschke M; Costa SG; Contiero J
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2066-74. PubMed ID: 19649781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants.
    Koch AK; Käppeli O; Fiechter A; Reiser J
    J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes.
    Syldatk C; Lang S; Wagner F; Wray V; Witte L
    Z Naturforsch C Biosci; 1985; 40(1-2):51-60. PubMed ID: 3993180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosurfactant production by a new Pseudomonas putida strain.
    Tuleva BK; Ivanov GR; Christova NE
    Z Naturforsch C J Biosci; 2002; 57(3-4):356-60. PubMed ID: 12064740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhamnolipids--next generation surfactants?
    Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R
    J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils.
    Haba E; Espuny MJ; Busquets M; Manresa A
    J Appl Microbiol; 2000 Mar; 88(3):379-87. PubMed ID: 10747218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874.
    Syldatk C; Lang S; Matulovic U; Wagner F
    Z Naturforsch C Biosci; 1985; 40(1-2):61-7. PubMed ID: 3922147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.