These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 10077851)

  • 41. Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB).
    Saikawa N; Ito K; Akiyama Y
    Biochemistry; 2002 Feb; 41(6):1861-8. PubMed ID: 11827531
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH).
    Herman C; Thévenet D; Bouloc P; Walker GC; D'Ari R
    Genes Dev; 1998 May; 12(9):1348-55. PubMed ID: 9573051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystallization of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli.
    Krzywda S; Brzozowski AM; Karata K; Ogura T; Wilkinson AJ
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):1066-7. PubMed ID: 12037319
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin.
    Okuno T; Yamanaka K; Ogura T
    Genes Cells; 2006 Mar; 11(3):261-8. PubMed ID: 16483314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct CIII-HflB interaction is responsible for the inhibition of the HflB (FtsH)-mediated proteolysis of Escherichia coli sigma(32) by lambdaCIII.
    Halder S; Banerjee S; Parrack P
    FEBS J; 2008 Oct; 275(19):4767-72. PubMed ID: 18721134
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH.
    Karata K; Inagawa T; Wilkinson AJ; Tatsuta T; Ogura T
    J Biol Chem; 1999 Sep; 274(37):26225-32. PubMed ID: 10473576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product.
    Nilsson D; Lauridsen AA; Tomoyasu T; Ogura T
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2601-10. PubMed ID: 8000529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB).
    Teff D; Koby S; Shotland Y; Ogura T; Oppenheim AB
    FEMS Microbiol Lett; 2000 Feb; 183(1):115-7. PubMed ID: 10650212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The C terminus of sigma(32) is not essential for degradation by FtsH.
    Tomoyasu T; Arsène F; Ogura T; Bukau B
    J Bacteriol; 2001 Oct; 183(20):5911-7. PubMed ID: 11566990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli.
    Akiyama Y
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8066-71. PubMed ID: 12034886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing the antiprotease activity of lambdaCIII, an inhibitor of the Escherichia coli metalloprotease HflB (FtsH).
    Halder S; Datta AB; Parrack P
    J Bacteriol; 2007 Nov; 189(22):8130-8. PubMed ID: 17890311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues.
    Asahara Y; Atsuta K; Motohashi K; Taguchi H; Yohda M; Yoshida M
    J Biochem; 2000 May; 127(5):931-7. PubMed ID: 10788805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Involvement of the FtsH (HflB) protease in the activity of sigma 54 promoters.
    Carmona M; de Lorenzo V
    Mol Microbiol; 1999 Jan; 31(1):261-70. PubMed ID: 9987127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-processing of FtsH and its implication for the cleavage specificity of this protease.
    Akiyama Y
    Biochemistry; 1999 Sep; 38(36):11693-9. PubMed ID: 10512625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lambda Xis degradation in vivo by Lon and FtsH.
    Leffers GG; Gottesman S
    J Bacteriol; 1998 Mar; 180(6):1573-7. PubMed ID: 9515930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins.
    van Bloois E; Dekker HL; Fröderberg L; Houben EN; Urbanus ML; de Koster CG; de Gier JW; Luirink J
    FEBS Lett; 2008 Apr; 582(10):1419-24. PubMed ID: 18387365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of bacteriophage lambda development by guanosine 5'-diphosphate-3'-diphosphate.
    Slomińska M; Neubauer P; Wegrzyn G
    Virology; 1999 Sep; 262(2):431-41. PubMed ID: 10502521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction and analyses of mutant ftsH alleles of Bacillus subtilis involving the ATPase- and Zn-binding domains.
    Kotschwar M; Harfst E; Ohanjan T; Schumann W
    Curr Microbiol; 2004 Sep; 49(3):180-5. PubMed ID: 15386101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Topology and subcellular localization of FtsH protein in Escherichia coli.
    Tomoyasu T; Yamanaka K; Murata K; Suzaki T; Bouloc P; Kato A; Niki H; Hiraga S; Ogura T
    J Bacteriol; 1993 Mar; 175(5):1352-7. PubMed ID: 8444797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression.
    Tomoyasu T; Yuki T; Morimura S; Mori H; Yamanaka K; Niki H; Hiraga S; Ogura T
    J Bacteriol; 1993 Mar; 175(5):1344-51. PubMed ID: 8444796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.