BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10078313)

  • 21. The significance of sleep onset and slow wave sleep for nocturnal release of growth hormone (GH) and cortisol.
    Born J; Muth S; Fehm HL
    Psychoneuroendocrinology; 1988; 13(3):233-43. PubMed ID: 3406323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slow-wave sleep and androgens: selective slow-wave sleep suppression affects testosterone and 17α-hydroxyprogesterone secretion.
    Ukraintseva YV; Liaukovich KM; Polishchuk АA; Martynova ОV; Belov DA; Simenel ES; Meira E Cruz М; Nizhnik АN
    Sleep Med; 2018 Aug; 48():117-126. PubMed ID: 29894840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The time course of slow wave sleep and REM sleep in habitual long and short sleepers: effect of prior wakefulness.
    Benoit O; Foret J; Bouard G
    Hum Neurobiol; 1983; 2(2):91-6. PubMed ID: 6629878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability of day and night sleep--a two-year follow-up of EEG parameters in three-shift workers.
    Akerstedt T; Kecklund G
    Sleep; 1991 Dec; 14(6):507-10. PubMed ID: 1798883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disruption of endocrine rhythms in sleeping sickness with preserved relationship between hormonal pulsatility and the REM-NREM sleep cycles.
    Brandenberger G; Buguet A; Spiegel K; Stanghellini A; Muanga G; Bogui P; Dumas M
    J Biol Rhythms; 1996 Sep; 11(3):258-67. PubMed ID: 8872597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of slow wave sleep proximity on evoked K-complex generation.
    Nicholas CL; Trinder J; Crowley KE; Colrain IM
    Neurosci Lett; 2006 Aug; 404(1-2):127-31. PubMed ID: 16784812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Maintenance of the relation between the pulsed secretion of hormones and the internal sleep structure in human African trypanosomiasis].
    Brandenberger G; Buguet A; Spiegel K; Stanghellini A; Mouanga G; Bogui P; Montmayeur A; Dumas M
    Bull Soc Pathol Exot; 1994; 87(5):383-9. PubMed ID: 7496206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Duration of sleep inertia after napping during simulated night work and in extended operations.
    Signal TL; van den Berg MJ; Mulrine HM; Gander PH
    Chronobiol Int; 2012 Jul; 29(6):769-79. PubMed ID: 22734577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gender difference of slow wave sleep in middle aged and elderly subjects.
    Fukuda N; Honma H; Kohsaka M; Kobayashi R; Sakakibara S; Kohsaka S; Koyama T
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):151-3. PubMed ID: 10459675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term effects of a tryptophan-free diet on serotonin metabolism and sleep-waking balance in rats.
    Lanoir J; Ternaux JP; Pons C; Lagarde JM
    Exp Brain Res; 1981; 41(3-4):346-57. PubMed ID: 6163653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep.
    Grahnstedt S; Ursin R
    Behav Brain Res; 1985 Dec; 18(3):233-9. PubMed ID: 4091961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Significance of slow wave sleep: considerations from a clinical viewpoint.
    Spiegel R; Köberle S; Allen SR
    Sleep; 1986; 9(1):66-79. PubMed ID: 3961369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of a 25-h sleep deprivation on daytime sleep in the middle-aged.
    Gaudreau H; Morettini J; Lavoie HB; Carrier J
    Neurobiol Aging; 2001; 22(3):461-8. PubMed ID: 11378253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The possible mechanisms of the disturbed circadian sleep-wake rhythm after time zone changes.
    Endo S; Sasaki M
    J UOEH; 1985 Mar; 7 Suppl():151-61. PubMed ID: 4012104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circasemidian 12 h cycle of slow wave sleep under constant darkness.
    Hayashi M; Morikawa T; Hori T
    Clin Neurophysiol; 2002 Sep; 113(9):1505-16. PubMed ID: 12169334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Body temperature and the return of slow wave activity in extended sleep.
    De Koninck GC; Hébert M; Carrier J; Lamarche C; Dufour S
    Electroencephalogr Clin Neurophysiol; 1996 Jan; 98(1):42-50. PubMed ID: 8689993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.
    Casey SJ; Solomons LC; Steier J; Kabra N; Burnside A; Pengo MF; Moxham J; Goldstein LH; Kopelman MD
    Neuropsychology; 2016 Nov; 30(8):931-945. PubMed ID: 27797541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trends in electroencephalographic synchronization across nonrapid eye movement sleep in infants.
    Bes F; Fagioli I; Peirano P; Schulz H; Salzarulo P
    Sleep; 1994 Jun; 17(4):323-8. PubMed ID: 7973315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The diurnal distribution of sleep propensity: experimental data about the interaction of the propensities for slow-wave sleep and REM sleep.
    Bes FW; Jobert M; Cordula Müller L; Schulz H
    J Sleep Res; 1996 Jun; 5(2):90-8. PubMed ID: 8795809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study.
    Braun AR; Balkin TJ; Wesenten NJ; Carson RE; Varga M; Baldwin P; Selbie S; Belenky G; Herscovitch P
    Brain; 1997 Jul; 120 ( Pt 7)():1173-97. PubMed ID: 9236630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.