These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10078860)

  • 1. Diet and snake venom evolution: can local selection alone explain intraspecific venom variation?
    Sasa M
    Toxicon; 1999 Feb; 37(2):249-52; author reply 253-60. PubMed ID: 10078860
    [No Abstract]   [Full Text] [Related]  

  • 2. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.
    Brahma RK; McCleary RJ; Kini RM; Doley R
    Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms.
    Rokyta DR; Margres MJ; Calvin K
    G3 (Bethesda); 2015 Sep; 5(11):2375-82. PubMed ID: 26358130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snake venom variability: methods of study, results and interpretation.
    Chippaux JP; Williams V; White J
    Toxicon; 1991; 29(11):1279-303. PubMed ID: 1814005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy.
    Yu C; Yu H; Li P
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2994-3006. PubMed ID: 33122066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colubrid Venom Composition: An -Omics Perspective.
    Junqueira-de-Azevedo IL; Campos PF; Ching AT; Mackessy SP
    Toxins (Basel); 2016 Jul; 8(8):. PubMed ID: 27455326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel transcripts in the maxillary venom glands of advanced snakes.
    Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR
    Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.
    Aird SD; Aggarwal S; Villar-Briones A; Tin MM; Terada K; Mikheyev AS
    BMC Genomics; 2015 Aug; 16():647. PubMed ID: 26315097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution and structure of snake venom phosphodiesterase (svPDE) highlight its importance in venom actions.
    Pan CT; Lin CC; Lin IJ; Chien KY; Lin YS; Chang HH; Wu WG
    Elife; 2023 Apr; 12():. PubMed ID: 37067034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.
    Hill RE; Mackessy SP
    Toxicon; 2000 Dec; 38(12):1663-87. PubMed ID: 10858509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snake venoms: A brief treatise on etymology, origins of terminology, and definitions.
    Weinstein SA
    Toxicon; 2015 Sep; 103():188-95. PubMed ID: 26166305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in venom composition and reactivity in two specimens of yellow-faced whip snake (Demansia psammophis) from the same geographical area.
    Williams V; White J
    Toxicon; 1990; 28(11):1351-4. PubMed ID: 2128423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents.
    Modahl CM; Brahma RK; Koh CY; Shioi N; Kini RM
    Annu Rev Anim Biosci; 2020 Feb; 8():91-116. PubMed ID: 31702940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).
    Urra FA; Pulgar R; Gutiérrez R; Hodar C; Cambiazo V; Labra A
    Toxicon; 2015 Dec; 108():19-31. PubMed ID: 26410112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rise of genomics in snake venom research: recent advances and future perspectives.
    Rao WQ; Kalogeropoulos K; Allentoft ME; Gopalakrishnan S; Zhao WN; Workman CT; Knudsen C; Jiménez-Mena B; Seneci L; Mousavi-Derazmahalleh M; Jenkins TP; Rivera-de-Torre E; Liu SQ; Laustsen AH
    Gigascience; 2022 Apr; 11():. PubMed ID: 35365832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venom yields from Australian and some other species of snakes.
    Mirtschin PJ; Dunstan N; Hough B; Hamilton E; Klein S; Lucas J; Millar D; Madaras F; Nias T
    Ecotoxicology; 2006 Aug; 15(6):531-8. PubMed ID: 16937075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity.
    Davies EL; Arbuckle K
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snake Venom, A Natural Library of New Potential Therapeutic Molecules: Challenges and Current Perspectives.
    Simoes-Silva R; Alfonso J; Gomez A; Holanda RJ; Sobrinho JC; Zaqueo KD; Moreira-Dill LS; Kayano AM; Grabner FP; da Silva SL; Almeida JR; Stabeli RG; Zuliani JP; Soares AM
    Curr Pharm Biotechnol; 2018; 19(4):308-335. PubMed ID: 29929461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species identification from dried snake venom.
    Singh CS; Gaur A; Sreenivas A; Singh L
    J Forensic Sci; 2012 May; 57(3):826-8. PubMed ID: 22268640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity.
    Mackessy SP; Sixberry NM; Heyborne WH; Fritts T
    Toxicon; 2006 Apr; 47(5):537-48. PubMed ID: 16545413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.