BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10079083)

  • 1. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+.
    Martin BL; Jurado LA; Hengge AC
    Biochemistry; 1999 Mar; 38(11):3386-92. PubMed ID: 10079083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: transition state structure and effect of calmodulin and Mn2+.
    Hengge AC; Martin BL
    Biochemistry; 1997 Aug; 36(33):10185-91. PubMed ID: 9254616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the transition state of the low-molecular mass small tyrosine phosphatase 1. Comparisons with other protein phosphatases.
    Hengge AC; Zhao Y; Wu L; Zhang ZY
    Biochemistry; 1997 Jun; 36(25):7928-36. PubMed ID: 9201938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substitution inert metal complexes on calcineurin.
    Martin BL; Rhode DJ
    Arch Biochem Biophys; 1999 Jun; 366(1):168-76. PubMed ID: 10334877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+.
    Conyers GB; Wu G; Bessman MJ; Mildvan AS
    Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcineurin hydrolysis of para-nitrophenyl phosphorothioate.
    Spannaus-Martin DJ; Martin BL
    Protein Pept Lett; 2004 Apr; 11(2):149-55. PubMed ID: 15078203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of the transition state of the protein-tyrosine phosphatase-catalyzed reaction.
    Hengge AC; Sowa GA; Wu L; Zhang ZY
    Biochemistry; 1995 Oct; 34(43):13982-7. PubMed ID: 7577995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies.
    Catrina IE; Hengge AC
    J Am Chem Soc; 2003 Jun; 125(25):7546-52. PubMed ID: 12812494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient state kinetic studies of the MutT-catalyzed nucleoside triphosphate pyrophosphohydrolase reaction.
    Xia Z; Azurmendi HF; Mildvan AS
    Biochemistry; 2005 Nov; 44(46):15334-44. PubMed ID: 16285737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray, NMR, and mutational studies of the catalytic cycle of the GDP-mannose mannosyl hydrolase reaction.
    Gabelli SB; Azurmendi HF; Bianchet MA; Amzel LM; Mildvan AS
    Biochemistry; 2006 Sep; 45(38):11290-303. PubMed ID: 16981689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation.
    Cathala G; Brunel C
    J Biol Chem; 1975 Aug; 250(15):6046-53. PubMed ID: 238994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase.
    Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM
    Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
    Brautigam CA; Sun S; Piccirilli JA; Steitz TA
    Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary 18O isotope effects for hexokinase-catalyzed phosphoryl transfer from ATP.
    Jones JP; Weiss PM; Cleland WW
    Biochemistry; 1991 Apr; 30(15):3634-9. PubMed ID: 2015221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.