BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 10079090)

  • 1. HlyC, the internal protein acyltransferase that activates hemolysin toxin: role of conserved histidine, serine, and cysteine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis.
    Trent MS; Worsham LM; Ernst-Fonberg ML
    Biochemistry; 1999 Mar; 38(11):3433-9. PubMed ID: 10079090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HlyC, the internal protein acyltransferase that activates hemolysin toxin: roles of various conserved residues in enzymatic activity as probed by site-directed mutagenesis.
    Trent MS; Worsham LM; Ernst-Fonberg ML
    Biochemistry; 1999 Jul; 38(29):9541-8. PubMed ID: 10413532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HlyC, the internal protein acyltransferase that activates hemolysin toxin: the role of conserved tyrosine and arginine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis.
    Trent MS; Worsham LM; Ernst-Fonberg ML
    Biochemistry; 1999 Jul; 38(27):8831-8. PubMed ID: 10393560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biochemistry of hemolysin toxin activation: characterization of HlyC, an internal protein acyltransferase.
    Trent MS; Worsham LM; Ernst-Fonberg ML
    Biochemistry; 1998 Mar; 37(13):4644-52. PubMed ID: 9521785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the catalytic mechanism of HlyC, the internal protein acyltransferase that activates Escherichia coli hemolysin toxin.
    Worsham LM; Trent MS; Earls L; Jolly C; Ernst-Fonberg ML
    Biochemistry; 2001 Nov; 40(45):13607-16. PubMed ID: 11695909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of hemolysin toxin: relationship between two internal protein sites of acylation.
    Langston KG; Worsham LM; Earls L; Ernst-Fonberg ML
    Biochemistry; 2004 Apr; 43(14):4338-46. PubMed ID: 15065878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of a protein acylation: activation of Escherichia coli hemolysin toxin.
    Worsham LM; Langston KG; Ernst-Fonberg ML
    Biochemistry; 2005 Feb; 44(4):1329-37. PubMed ID: 15667226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid residues of Escherichia coli acyl carrier protein involved in heterologous protein interactions.
    Worsham LM; Earls L; Jolly C; Langston KG; Trent MS; Ernst-Fonberg ML
    Biochemistry; 2003 Jan; 42(1):167-76. PubMed ID: 12515551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparinase I from Flavobacterium heparinum. Identification of a critical histidine residue essential for catalysis as probed by chemical modification and site-directed mutagenesis.
    Godavarti R; Cooney CL; Langer R; Sasisekharan R
    Biochemistry; 1996 May; 35(21):6846-52. PubMed ID: 8639636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ordered reaction mechanism for bacterial toxin acylation by the specialized acyltransferase HlyC: formation of a ternary complex with acylACP and protoxin substrates.
    Stanley P; Hyland C; Koronakis V; Hughes C
    Mol Microbiol; 1999 Dec; 34(5):887-901. PubMed ID: 10594816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation.
    Issartel JP; Koronakis V; Hughes C
    Nature; 1991 Jun; 351(6329):759-61. PubMed ID: 2062368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli hemolysin mutants with altered target cell specificity.
    Pellett S; Welch RA
    Infect Immun; 1996 Aug; 64(8):3081-7. PubMed ID: 8757837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D
    Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo proteolytic degradation of the Escherichia coli acyltransferase HlyC.
    Guzman-Verri C; Chaves-Olarte E; García F; Arvidson S; Moreno E
    J Biol Chem; 2001 May; 276(20):16660-6. PubMed ID: 11278516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis.
    Jois PS; Madhu N; Rao DN
    Biochem J; 2008 Mar; 410(3):543-53. PubMed ID: 17995451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E. coli hemolysin interactions with prokaryotic and eukaryotic cell membranes.
    Hughes C; Stanley P; Koronakis V
    Bioessays; 1992 Aug; 14(8):519-25. PubMed ID: 1365905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Escherichia coli prohemolysin to the membrane-targetted toxin by HlyC-directed ACP-dependent fatty acylation.
    Hughes C; Issartel JP; Hardie K; Stanley P; Koronakis E; Koronakis V
    FEMS Microbiol Immunol; 1992 Sep; 5(1-3):37-43. PubMed ID: 1419113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved serine-threonine-serine motif of the carnitine acyltransferases is involved in carnitine binding and transition-state stabilization: a site-directed mutagenesis study.
    Cronin CN
    Biochem Biophys Res Commun; 1997 Sep; 238(3):784-9. PubMed ID: 9325168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY.
    Golinelli MP; Chmiel NH; David SS
    Biochemistry; 1999 Jun; 38(22):6997-7007. PubMed ID: 10353811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.