BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10079199)

  • 1. Hydrazide synthesis: novel substrate specificity of amidase.
    Kobayashi M; Goda M; Shimizu S
    Biochem Biophys Res Commun; 1999 Mar; 256(2):415-8. PubMed ID: 10079199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and primary characterization of an amidase from Rhodococcus rhodochrous.
    Kotlova EK; Chestukhina GG; Astaurova OB; Leonova TE; Yanenko AS; Debabov VG
    Biochemistry (Mosc); 1999 Apr; 64(4):384-9. PubMed ID: 10231590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic mechanism of amidase also involves nitrile hydrolysis.
    Kobayashi M; Goda M; Shimizu S
    FEBS Lett; 1998 Nov; 439(3):325-8. PubMed ID: 9845347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis.
    Kobayashi M; Goda M; Shimizu S
    Biochem Biophys Res Commun; 1998 Dec; 253(3):662-6. PubMed ID: 9918784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Sequencing and expression of the gene and purification and characterization of the gene product.
    Kobayashi M; Komeda H; Nagasawa T; Nishiyama M; Horinouchi S; Beppu T; Yamada H; Shimizu S
    Eur J Biochem; 1993 Oct; 217(1):327-36. PubMed ID: 7916690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R-stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide.
    Park HJ; Uhm KN; Kim HK
    J Microbiol Biotechnol; 2008 Mar; 18(3):552-9. PubMed ID: 18388476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids.
    Fournand D; Bigey F; Arnaud A
    Appl Environ Microbiol; 1998 Aug; 64(8):2844-52. PubMed ID: 9687439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aliphatic amidase from Rhodococcus rhodochrous M8 is related to the nitrilase/cyanide hydratase family.
    Pertsovich SI; Guranda DT; Podchernyaev DA; Yanenko AS; Svedas VK
    Biochemistry (Mosc); 2005 Nov; 70(11):1280-7. PubMed ID: 16336190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila.
    Egorova K; Trauthwein H; Verseck S; Antranikian G
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):38-45. PubMed ID: 15103424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel amidohydrolytic reactions in oxidative pyrimidine metabolism: analysis of the barbiturase reaction and discovery of a novel enzyme, ureidomalonase.
    Soong CL; Ogawa J; Shimizu S
    Biochem Biophys Res Commun; 2001 Aug; 286(1):222-6. PubMed ID: 11485332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of nitrilase and nitrile hydratase biocatalytic systems.
    Brady D; Beeton A; Zeevaart J; Kgaje C; van Rantwijk F; Sheldon RA
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):76-85. PubMed ID: 14666389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cloning the amidase gene from Rhodococcus rhodochrous M18 and its expression in Escherichia coli].
    Riabchenko LE; Podcherniaev DA; Kotlova EK; Ianenko AS
    Genetika; 2006 Aug; 42(8):1075-82. PubMed ID: 17025157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity.
    Makhongela HS; Glowacka AE; Agarkar VB; Sewell BT; Weber B; Cameron RA; Cowan DA; Burton SG
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):801-11. PubMed ID: 17347819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Catalytic and Stereoselective Properties of the Immobilized Amidase of Rhodococcus rhodochrous 4-1].
    Gorbunova AN; Maksimova YG; Ovechkina GV; Maksimov AY
    Prikl Biokhim Mikrobiol; 2015; 51(5):482-9. PubMed ID: 26596084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrile biotransformation for highly enantioselective synthesis of 3-substituted 2,2-dimethylcyclopropanecarboxylic acids and amides.
    Wang MX; Feng GQ
    J Org Chem; 2003 Jan; 68(2):621-4. PubMed ID: 12530896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides.
    Hirrlinger B; Stolz A; Knackmuss HJ
    J Bacteriol; 1996 Jun; 178(12):3501-7. PubMed ID: 8655547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aliphatic amidase of Rhodococcus rhodochrous PA-34: Purification, characterization and application in synthesis of acrylic acid.
    Thakur N; Kumar V; Sharma NK; Thakur S; Bhalla TC
    Protein Pept Lett; 2016; 23(2):152-8. PubMed ID: 26667322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase.
    Akutsu-Shigeno Y; Adachi Y; Yamada C; Toyoshima K; Nomura N; Uchiyama H; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2006 Apr; 70(4):422-9. PubMed ID: 16041575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro hepatic microsomal metabolism of benzoic acid benzylidenehydrazide.
    Ulgen M; Durgun BB; Rollas S; Gorrod JW
    Drug Metabol Drug Interact; 1997; 13(4):285-94. PubMed ID: 21568806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles. Ser195 and Cys145 are predicted to be the active site nucleophiles.
    Cilia E; Fabbri A; Uriani M; Scialdone GG; Ammendola S
    FEBS J; 2005 Sep; 272(18):4716-24. PubMed ID: 16156792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.