These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 100793)
21. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV. Yu W; Yue G; Han X; Chen J; Tian B Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210 [TBL] [Abstract][Full Text] [Related]
22. Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Coderre JA; Makar MS; Micca PL; Nawrocky MM; Liu HB; Joel DD; Slatkin DN; Amols HI Int J Radiat Oncol Biol Phys; 1993 Dec; 27(5):1121-9. PubMed ID: 8262837 [TBL] [Abstract][Full Text] [Related]
23. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy. Yanch JC; Zhou XL; Brownell GL Radiat Res; 1991 Apr; 126(1):1-20. PubMed ID: 2020734 [TBL] [Abstract][Full Text] [Related]
24. Comet assay study of DNA damage and repair of tumour cells following boron neutron capture irradiation with fast d(14) + Be neutrons. Pöller F; Bauch T; Sauerwein W; Böcker W; Wittig A; Streffer C Int J Radiat Biol; 1996 Nov; 70(5):593-602. PubMed ID: 8947541 [TBL] [Abstract][Full Text] [Related]
25. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301 [TBL] [Abstract][Full Text] [Related]
26. BNCT as a boost for fast neutron therapy? Lüdemann L; Matzen T; Schmidt R; Scobel W Bull Cancer Radiother; 1996; 83 Suppl():198s-200s. PubMed ID: 8949779 [TBL] [Abstract][Full Text] [Related]
28. Characteristics of boron-dose enhancer dependent on dose protocol and 10B concentration for BNCT using near-threshold 7Li(p,n)7Be direct neutrons. Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M Phys Med Biol; 2005 Jan; 50(1):167-77. PubMed ID: 15715430 [TBL] [Abstract][Full Text] [Related]
29. The production by 72 MeV protons of keV neutrons for 10B neutron capture therapy. Condé H; Crawford JF; Dahl B; Grusell E; Larsson B; Petterson CB; Reist H; Sjöstrand NG; Sornsuntisook O; Thuresson L Strahlenther Onkol; 1989 Apr; 165(4):340-2. PubMed ID: 2540542 [TBL] [Abstract][Full Text] [Related]
30. Monte Carlo simulation of fast neutron spectra: mean lineal energy estimation with an effectiveness function and correlation to RBE. Pignol J; Slabbert J; Binns P Int J Radiat Oncol Biol Phys; 2001 Jan; 49(1):251-60. PubMed ID: 11163522 [TBL] [Abstract][Full Text] [Related]
31. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT. Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627 [TBL] [Abstract][Full Text] [Related]
32. Fast neutron radiotherapy and boron neutron capture therapy: application to a human melanoma test system. Laramore GE; Risler R; Griffin TW; Wootton P; Wilbur DS Bull Cancer Radiother; 1996; 83 Suppl():191s-7s. PubMed ID: 8949778 [TBL] [Abstract][Full Text] [Related]
33. Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT. Kota C; Maughan RL; Tattam D; Beynon TD Med Phys; 2000 Mar; 27(3):535-48. PubMed ID: 10757605 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of fast neutron beams with boron neutron capture therapy. A mechanism for achieving a selective, concomitant tumor boost. Buchholz TA; Laramore GE; Wootton P; Livesey JC; Wilbur DS; Risler R; Phillips M; Jacky J; Griffin TW Acta Oncol; 1994; 33(3):307-13. PubMed ID: 8018360 [TBL] [Abstract][Full Text] [Related]
35. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
36. Proposal for determining absolute biological effectiveness of boron neutron capture therapy-the effect of 10B(n,α)7Li dose can be predicted from the nucleocytoplasmic ratio or the cell size. Ono K; Tanaka H; Tamari Y; Watanabe T; Suzuki M; Masunaga SI J Radiat Res; 2019 Jan; 60(1):29-36. PubMed ID: 30395286 [TBL] [Abstract][Full Text] [Related]
37. Present status, trends and needs in fast neutron therapy. Wambersie A; Menzel HG Bull Cancer Radiother; 1996; 83 Suppl():68s-77s. PubMed ID: 8949755 [TBL] [Abstract][Full Text] [Related]
38. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy. Mijnheer BJ Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808 [TBL] [Abstract][Full Text] [Related]
39. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research. Perks CA; Mill AJ; Constantine G; Harrison KG; Gibson JA Br J Radiol; 1988 Dec; 61(732):1115-26. PubMed ID: 3064858 [TBL] [Abstract][Full Text] [Related]
40. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber. Lüdemann L; Matzen T; Matzke M; Schmidt R; Scobel W Med Phys; 1995 Nov; 22(11 Pt 1):1743-7. PubMed ID: 8587527 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]