These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10081086)

  • 1. Recent advances in identifying and validating drug targets in trypanosomes and leishmanias.
    Barrett MP; Mottram JC; Coombs GH
    Trends Microbiol; 1999 Feb; 7(2):82-8. PubMed ID: 10081086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug targets in kinetoplastid parasites. Preface.
    Majumder HK
    Adv Exp Med Biol; 2008; 625():vii-viii. PubMed ID: 18365653
    [No Abstract]   [Full Text] [Related]  

  • 3. Cellular trafficking in trypanosomatids: a new target for therapies?
    Costa-Pinto D; Trindade LS; McMahon-Pratt D; Traub-Cseko YM
    Int J Parasitol; 2001 May; 31(5-6):536-43. PubMed ID: 11334939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular studies on trypanothione reductase, a target for antiparasitic drugs.
    Walsh C; Bradley M; Nadeau K
    Trends Biochem Sci; 1991 Aug; 16(8):305-9. PubMed ID: 1957352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania.
    Cavalli A; Bolognesi ML
    J Med Chem; 2009 Dec; 52(23):7339-59. PubMed ID: 19606868
    [No Abstract]   [Full Text] [Related]  

  • 6. Parasitology. Drugs to combat tropical protozoan parasites.
    Gelb MH; Hol WG
    Science; 2002 Jul; 297(5580):343-4. PubMed ID: 12130767
    [No Abstract]   [Full Text] [Related]  

  • 7. Kinetoplast as a potential chemotherapeutic target of trypanosomatids.
    Motta MC
    Curr Pharm Des; 2008; 14(9):847-54. PubMed ID: 18473834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foreword. Trypanosomatid disease drug discovery and target identification.
    N Setzer W
    Future Med Chem; 2013 Oct; 5(15):1703-4. PubMed ID: 24144406
    [No Abstract]   [Full Text] [Related]  

  • 9. Targeting tRNA-synthetase interactions towards novel therapeutic discovery against eukaryotic pathogens.
    Kelly P; Hadi-Nezhad F; Liu DY; Lawrence TJ; Linington RG; Ibba M; Ardell DH
    PLoS Negl Trop Dis; 2020 Feb; 14(2):e0007983. PubMed ID: 32106219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylglyoxal metabolism in trypanosomes and leishmania.
    Wyllie S; Fairlamb AH
    Semin Cell Dev Biol; 2011 May; 22(3):271-7. PubMed ID: 21310261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemosensitizers in drug transport mechanisms involved in protozoan resistance.
    Pradines B; Pagès JM; Barbe J
    Curr Drug Targets Infect Disord; 2005 Dec; 5(4):411-31. PubMed ID: 16535862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development.
    Kalel VC; Mäser P; Sattler M; Erdmann R; Popowicz GM
    Curr Opin Microbiol; 2018 Dec; 46():116-122. PubMed ID: 30481613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target.
    Moyersoen J; Choe J; Fan E; Hol WG; Michels PA
    FEMS Microbiol Rev; 2004 Nov; 28(5):603-43. PubMed ID: 15539076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases.
    Battista T; Colotti G; Ilari A; Fiorillo A
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes.
    Gilbert IH
    Biochim Biophys Acta; 2002 Jul; 1587(2-3):249-57. PubMed ID: 12084467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pentose Phosphate Pathway in Parasitic Trypanosomatids.
    Kovářová J; Barrett MP
    Trends Parasitol; 2016 Aug; 32(8):622-634. PubMed ID: 27174163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors.
    Qvit N; Schechtman D; Pena DA; Berti DA; Soares CO; Miao Q; Liang LA; Baron LA; Teh-Poot C; Martínez-Vega P; Ramirez-Sierra MJ; Churchill E; Cunningham AD; Malkovskiy AV; Federspiel NA; Gozzo FC; Torrecilhas AC; Manso Alves MJ; Jardim A; Momar N; Dumonteil E; Mochly-Rosen D
    Int J Parasitol Drugs Drug Resist; 2016 Apr; 6(1):74-84. PubMed ID: 27054066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Kinetoplastid and Apicomplexan Thymidylate Biosynthesis as an Antiprotozoal Strategy.
    Valente M; Vidal AE; González-Pacanowska D
    Curr Med Chem; 2019; 26(22):4262-4279. PubMed ID: 30259810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae.
    Haimeur A; Brochu C; Genest P; Papadopoulou B; Ouellette M
    Mol Biochem Parasitol; 2000 Apr; 108(1):131-5. PubMed ID: 10802326
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.