BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10082318)

  • 1. ATP-sensitive potassium channels regulate in vivo dopamine release in rat striatum.
    Zhu DX; Sullivan JP; Brioni JD
    Jpn J Pharmacol; 1999 Jan; 79(1):59-64. PubMed ID: 10082318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-sensitive K+ channel openers block sulpiride-induced dopamine release in the rat striatum.
    Tanaka T; Yoshida M; Yokoo H; Mizoguchi K; Tanaka M
    Eur J Pharmacol; 1996 Feb; 297(1-2):35-41. PubMed ID: 8851163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels.
    Avshalumov MV; Chen BT; Koós T; Tepper JM; Rice ME
    J Neurosci; 2005 Apr; 25(17):4222-31. PubMed ID: 15858048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-dependent blunted membrane potential responses to ATP-sensitive K+ channel modulators in aortae from rats with cirrhosis.
    Lahaye P; Fouassier L; Tazi KA; De Gottardi A; Fléjou JF; Chagneau C; Rona JP; Housset C; Reichen J; Lebrec D; Moreau R
    J Hepatol; 1999 Jan; 30(1):107-14. PubMed ID: 9927157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide.
    Quast U; Cook NS
    J Pharmacol Exp Ther; 1989 Jul; 250(1):261-71. PubMed ID: 2501478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum.
    Milton SL; Lutz PL
    Am J Physiol Regul Integr Comp Physiol; 2005 Jul; 289(1):R77-83. PubMed ID: 15718391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cromakalim, RP49356, diazoxide, glibenclamide and galanin in rat portal vein.
    Longmore J; Newgreen DT; Weston AH
    Eur J Pharmacol; 1990 Nov; 190(1-2):75-84. PubMed ID: 1706274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of age on the vasorelaxation elicited by cromakalim. Role of K+ channels and cyclic GMP.
    Ferrer M; Tejera N; Marín J; Balfagón G
    Life Sci; 1998; 63(23):2071-8. PubMed ID: 9839530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle.
    Standen NB; Quayle JM; Davies NW; Brayden JE; Huang Y; Nelson MT
    Science; 1989 Jul; 245(4914):177-80. PubMed ID: 2501869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of norepinephrine release by ATP-dependent K(+)-channel activators and inhibitors in guinea-pig and human isolated right atrium.
    Oe K; Sperlágh B; Sántha E; Matkó I; Nagashima H; Foldes FF; Vizi ES
    Cardiovasc Res; 1999 Jul; 43(1):125-34. PubMed ID: 10536697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-gated K(+) channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides.
    Lohmann AB; Welch SP
    Eur J Pharmacol; 1999 Dec; 385(2-3):119-27. PubMed ID: 10607867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers.
    Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ
    J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KATP-channel-induced vasodilation is modulated by the Na,K-pump activity in rabbit coronary small arteries.
    Glavind-Kristensen M; Matchkov V; Hansen VB; Forman A; Nilsson H; Aalkjaer C
    Br J Pharmacol; 2004 Dec; 143(7):872-80. PubMed ID: 15504751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of ATP-sensitive K+ channels in relaxation of penile resistance arteries.
    Ruiz Rubio JL; Hernández M; Rivera de los Arcos L; Benedito S; Recio P; García P; García-Sacristán A; Prieto D
    Urology; 2004 Apr; 63(4):800-5. PubMed ID: 15072915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sulfonylureas on K(ATP) channel-dependent vasodilation.
    Cyrino FZ; Bottino DA; Coelho FC; Ravel D; Bouskela E
    J Diabetes Complications; 2003; 17(2 Suppl):6-10. PubMed ID: 12623162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel K(ATP) current in cultured neonatal rat atrial appendage cardiomyocytes.
    Baron A; van Bever L; Monnier D; Roatti A; Baertschi AJ
    Circ Res; 1999 Oct; 85(8):707-15. PubMed ID: 10521244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ATP-sensitive potassium channels in striatal dopamine release: an in vivo microdialysis study.
    Tanaka T; Yoshida M; Yokoo H; Mizoguchi K; Tanaka M
    Pharmacol Biochem Behav; 1995 Dec; 52(4):831-5. PubMed ID: 8587927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones.
    Sellers AJ; Boden PR; Ashford ML
    Br J Pharmacol; 1992 Dec; 107(4):1068-74. PubMed ID: 1467829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subsecond regulation of striatal dopamine release by pre-synaptic KATP channels.
    Patel JC; Witkovsky P; Coetzee WA; Rice ME
    J Neurochem; 2011 Sep; 118(5):721-36. PubMed ID: 21689107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.