These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47 related articles for article (PubMed ID: 10082665)
1. SHC1, a high pH inducible gene required for growth at alkaline pH in Saccharomyces cerevisiae. Hong SK; Han SB; Snyder M; Choi EY Biochem Biophys Res Commun; 1999 Feb; 255(1):116-22. PubMed ID: 10082665 [TBL] [Abstract][Full Text] [Related]
2. Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Sanz M; Trilla JA; Duran A; Roncero C Mol Microbiol; 2002 Mar; 43(5):1183-95. PubMed ID: 11918806 [TBL] [Abstract][Full Text] [Related]
3. Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Schoondermark-Stolk SA; Jansen M; Veurink JH; Verkleij AJ; Verrips CT; Euverink GJ; Boonstra J; Dijkhuizen L Appl Microbiol Biotechnol; 2006 Mar; 70(2):237-46. PubMed ID: 16041576 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of rns4/vps32 mutation in the RNase T1 expression-sensitive strain of Saccharomyces cerevisiae: Evidence for altered ambient response resulting in transportation of the secretory protein to vacuoles. Unno K; Juvvadi PR; Nakajima H; Shirahige K; Kitamoto K FEMS Yeast Res; 2005 Jun; 5(9):801-12. PubMed ID: 15925308 [TBL] [Abstract][Full Text] [Related]
5. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. Kawahata M; Masaki K; Fujii T; Iefuji H FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514 [TBL] [Abstract][Full Text] [Related]
6. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Ma P; Winderickx J; Nauwelaers D; Dumortier F; De Doncker A; Thevelein JM; Van Dijck P Yeast; 1999 Aug; 15(11):1097-109. PubMed ID: 10455233 [TBL] [Abstract][Full Text] [Related]
7. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Pascual-Ahuir A; Serrano R; Proft M Mol Cell Biol; 2001 Jan; 21(1):16-25. PubMed ID: 11113177 [TBL] [Abstract][Full Text] [Related]
8. Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking. Scheuring S; Röhricht RA; Schöning-Burkhardt B; Beyer A; Müller S; Abts HF; Köhrer K J Mol Biol; 2001 Sep; 312(3):469-80. PubMed ID: 11563910 [TBL] [Abstract][Full Text] [Related]
9. On the hsp26 of Saccharomyces cerevisiae. Silva JT; Verícimo MA; Floriano WB; Dutra MB; Panek AD Biochem Mol Biol Int; 1994 May; 33(2):211-20. PubMed ID: 7951041 [TBL] [Abstract][Full Text] [Related]
10. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. Raghava GP; Han JH BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999 [TBL] [Abstract][Full Text] [Related]
11. Aspergillus nidulans DigA, a potential homolog of Saccharomyces cerevisiae Pep3 (Vps18), is required for nuclear migration, mitochondrial morphology and polarized growth. Geissenhöner A; Sievers N; Brock M; Fischer R Mol Genet Genomics; 2001 Dec; 266(4):672-85. PubMed ID: 11810240 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae. Fujita A; Hiroko T; Hiroko F; Oka C Gene; 2005 Dec; 363():97-104. PubMed ID: 16289536 [TBL] [Abstract][Full Text] [Related]
13. Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1. Heyken WT; Wagner C; Wittmann J; Albrecht A; Schüller HJ Yeast; 2003 Oct; 20(14):1177-88. PubMed ID: 14587102 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification. Zuzuarregui A; Carrasco P; Palacios A; Julien A; del Olmo M J Appl Microbiol; 2005; 98(2):299-307. PubMed ID: 15659184 [TBL] [Abstract][Full Text] [Related]
15. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae. Eck R; Stoyan T; Künkel W Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence based assay of GAL system in yeast Saccharomyces cerevisiae. Stagoj MN; Comino A; Komel R FEMS Microbiol Lett; 2005 Mar; 244(1):105-10. PubMed ID: 15727828 [TBL] [Abstract][Full Text] [Related]
17. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Versele M; Thevelein JM; Van Dijck P Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784 [TBL] [Abstract][Full Text] [Related]
18. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Cai H; Kauffman S; Naider F; Becker JM Genetics; 2006 Mar; 172(3):1459-76. PubMed ID: 16361226 [TBL] [Abstract][Full Text] [Related]
19. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase. Zaman Z; Bowman SB; Kornfeld GD; Brown AJ; Dawes IW Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):855-62. PubMed ID: 10359673 [TBL] [Abstract][Full Text] [Related]
20. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae. Roberts GG; Hudson AP Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]