These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10082909)

  • 1. Load signalling by cockroach trochanteral campaniform sensilla.
    Zill SN; Ridgel AL; DiCaprio RA; Frazier SF
    Brain Res; 1999 Mar; 822(1-2):271-5. PubMed ID: 10082909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion.
    Ridgel AL; Frazier SF; DiCaprio RA; Zill SN
    J Comp Physiol A; 2000 Apr; 186(4):359-74. PubMed ID: 10798724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force encoding in stick insect legs delineates a reference frame for motor control.
    Zill SN; Schmitz J; Chaudhry S; Büschges A
    J Neurophysiol; 2012 Sep; 108(5):1453-72. PubMed ID: 22673329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):201-15. PubMed ID: 14727134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active signaling of leg loading and unloading in the cockroach.
    Ridgel AL; Frazier SF; Dicaprio RA; Zill SN
    J Neurophysiol; 1999 Mar; 81(3):1432-7. PubMed ID: 10085370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of the trochanteral hair plate and its function in the control of walking in the cockroach.
    Wong RK; Pearson KG
    J Exp Biol; 1976 Feb; 64(1):233-49. PubMed ID: 1270992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The central morphology of mechanoreceptor afferents in the metathoracic leg of the cockroach, Periplaneta americana (Insecta).
    Collin SP
    J Neurobiol; 1985 Jul; 16(4):269-82. PubMed ID: 4031848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
    Zill SN; Neff D; Chaudhry S; Exter A; Schmitz J; Büschges A
    Arthropod Struct Dev; 2017 Jul; 46(4):564-578. PubMed ID: 28552666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
    Zill SN; Büschges A; Schmitz J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):851-67. PubMed ID: 21544617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli.
    Zill SN; Dallmann CJ; S Szczecinski N; Büschges A; Schmitz J
    J Neurophysiol; 2021 Jul; 126(1):227-248. PubMed ID: 34107221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity and directional sensitivity of leg campaniform sensilla in a stick insect.
    Delcomyn F
    J Comp Physiol A; 1991 Jan; 168(1):113-9. PubMed ID: 2033563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of sensory transduction in the sensilla of the trochanteral hair plate of the cockroach, Periplaneta americana.
    French AS; Sanders EJ
    Cell Tissue Res; 1979 Apr; 198(1):159-74. PubMed ID: 225032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional role of leg receptors of the cockroach Periplaneta americana in the system of walking control].
    Gorelkin VS; Severina IIu; Isavnina IL
    Zh Evol Biokhim Fiziol; 2012; 48(6):568-72. PubMed ID: 23401967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches.
    Keller BR; Duke ER; Amer AS; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Aug; 193(8):881-91. PubMed ID: 17541783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
    Akay T; Ludwar BCh; Göritz ML; Schmitz J; Büschges A
    J Neurosci; 2007 Mar; 27(12):3285-94. PubMed ID: 17376989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force feedback reinforces muscle synergies in insect legs.
    Zill SN; Chaudhry S; Büschges A; Schmitz J
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):541-53. PubMed ID: 26193626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence of load and movement information onto leg motoneurons in insects.
    Schmitz J; Stein W
    J Neurobiol; 2000 Mar; 42(4):424-36. PubMed ID: 10699980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect.
    Haberkorn A; Gruhn M; Zill SN; Büschges A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):253-270. PubMed ID: 30976919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects.
    Zill SN; Dallmann CJ; Zyhowski W; Chaudhry H; Gebehart C; Szczecinski NS
    J Neurophysiol; 2024 Feb; 131(2):198-215. PubMed ID: 38166479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
    Hess D; Büschges A
    J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.