BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10085570)

  • 1. Risk assessment of a former military base contaminated with organoarsenic-based warfare agents: uptake of arsenic by terrestrial plants.
    Pitten FA; Müller G; König P; Schmidt D; Thurow K; Kramer A
    Sci Total Environ; 1999 Feb; 226(2-3):237-45. PubMed ID: 10085570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Chemical treatment and decomposition technique of the chemical warfare agents containing arsenicals].
    Kaise T; Kinoshita K
    Yakugaku Zasshi; 2009 Jan; 129(1):45-51. PubMed ID: 19122436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents.
    Köhler M; Hofmann K; Völsgen F; Thurow K; Koch A
    Chemosphere; 2001 Feb; 42(4):425-9. PubMed ID: 11100795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The toxicity of organoarsenic-based warfare agents: in vitro and in vivo studies.
    Henriksson J; Johannisson A; Bergqvist PA; Norrgren L
    Arch Environ Contam Toxicol; 1996 Feb; 30(2):213-9. PubMed ID: 8593082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Molecular Markers and Analytical Methods Documenting the Occurrence of Mustard Gas and Arsenical Warfare Agents in Soil.
    Sassolini A; Brinchi G; Di Gennaro A; Dionisi S; Dominici C; Fantozzi L; Onofri G; Piazza R; Guidotti M
    Bull Environ Contam Toxicol; 2016 Sep; 97(3):432-8. PubMed ID: 27385368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PBT screening profile of chemical warfare agents (CWAs).
    Sanderson H; Fauser P; Thomsen M; Sørensen PB
    J Hazard Mater; 2007 Sep; 148(1-2):210-5. PubMed ID: 17374446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of accumulation, extractability, and metabolization of five different phenylarsenic compounds in plants by ion chromatography with mass spectrometric detection and by atomic emission spectroscopy.
    Schmidt AC; Kutschera K; Mattusch J; Otto M
    Chemosphere; 2008 Dec; 73(11):1781-7. PubMed ID: 18848716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute aquatic toxicity of arsenic-based chemical warfare agents to Daphnia magna.
    Czub M; Nawała J; Popiel S; Brzeziński T; Maszczyk P; Sanderson H; Maser E; Gordon D; Dziedzic D; Dawidziuk B; Pijanowska J; Fabisiak J; Szubska M; Lang T; Vanninen P; Niemikoski H; Missiaen T; Lehtonen KK; Bełdowski J; Kotwicki L
    Aquat Toxicol; 2021 Jan; 230():105693. PubMed ID: 33310671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain.
    Simmler M; Suess E; Christl I; Kotsev T; Kretzschmar R
    Sci Total Environ; 2016 Dec; 572():742-754. PubMed ID: 27614862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.
    García-Salgado S; Quijano MÁ
    Environ Sci Process Impacts; 2014 Mar; 16(3):604-12. PubMed ID: 24513726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of organoarsenic warfare agents in sediment samples from Skagerrak by gas chromatography-mass spectrometry.
    Tørnes JA; Opstad AM; Johnsen BA
    Sci Total Environ; 2006 Mar; 356(1-3):235-46. PubMed ID: 15993928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation in field-collected and laboratory-exposed earthworms Lumbricus terrestris.
    Button M; Moriarty MM; Watts MJ; Zhang J; Koch I; Reimer KJ
    Chemosphere; 2011 Nov; 85(8):1277-83. PubMed ID: 21868054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea-dumped chemical weapons: environmental risk, occupational hazard.
    Greenberg MI; Sexton KJ; Vearrier D
    Clin Toxicol (Phila); 2016; 54(2):79-91. PubMed ID: 26692048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic speciation in plants growing in arsenic-contaminated sites.
    Ruiz-Chancho MJ; López-Sánchez JF; Schmeisser E; Goessler W; Francesconi KA; Rubio R
    Chemosphere; 2008 Apr; 71(8):1522-30. PubMed ID: 18179812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of pepper plants (Capsicum annum L.) on soil amendment by inorganic and organic compounds of arsenic.
    Száková J; Tlustos P; Goessler W; Pavlíková D; Schmeisser E
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):38-46. PubMed ID: 17031752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentrations and speciation of arsenic in groundwater polluted by warfare agents.
    Daus B; Hempel M; Wennrich R; Weiss H
    Environ Pollut; 2010 Nov; 158(11):3439-44. PubMed ID: 20667635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment.
    Muzaffar S; Khan J; Srivastava R; Gorbatyuk MS; Athar M
    Cell Biol Toxicol; 2023 Feb; 39(1):85-110. PubMed ID: 35362847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plants increase arsenic in solution but decrease the non-specifically bound fraction in the rhizosphere of an alkaline, naturally rich soil.
    Obeidy C; Bravin MN; Bouchardon JL; Conord C; Moutte J; Guy B; Faure O
    Ecotoxicol Environ Saf; 2016 Apr; 126():23-29. PubMed ID: 26707185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological responses of wild grass Holcus lanatus L. to potentially toxic elements in soils: a review.
    Rahman IMM; Khan BM
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):54470-54482. PubMed ID: 36995503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.