These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 10086382)
1. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Craft N; Shostak Y; Carey M; Sawyers CL Nat Med; 1999 Mar; 5(3):280-5. PubMed ID: 10086382 [TBL] [Abstract][Full Text] [Related]
2. [Androgen-independent prostate carcinoma and androgen-receptor: recent progress in molecular genetics]. Sultan C; Terouanne B; Tahiri B; Lumbroso S; Avances C; Orio F Bull Cancer; 1999; 86(7-8):618-21. PubMed ID: 10477378 [TBL] [Abstract][Full Text] [Related]
3. Role of coordinated molecular alterations in the development of androgen-independent prostate cancer: an in vitro model that corroborates clinical observations. Shi Y; Chatterjee SJ; Brands FH; Shi SR; Pootrakul L; Taylor CR; Datar R; Cote RJ BJU Int; 2006 Jan; 97(1):170-8. PubMed ID: 16336351 [TBL] [Abstract][Full Text] [Related]
4. Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts. Mellinghoff IK; Tran C; Sawyers CL Cancer Res; 2002 Sep; 62(18):5254-9. PubMed ID: 12234993 [TBL] [Abstract][Full Text] [Related]
5. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Nickerson T; Chang F; Lorimer D; Smeekens SP; Sawyers CL; Pollak M Cancer Res; 2001 Aug; 61(16):6276-80. PubMed ID: 11507082 [TBL] [Abstract][Full Text] [Related]
6. Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells. Xie Y; Wolff DW; Lin MF; Tu Y Mol Pharmacol; 2007 Jul; 72(1):73-85. PubMed ID: 17430995 [TBL] [Abstract][Full Text] [Related]
7. [Relationship between HER-2/neu over-expression and androgen independent prostate cancer]. Bai Q; Chen F; Qi J; Chen JH; Wang YX Zhonghua Nan Ke Xue; 2007 May; 13(5):414-6. PubMed ID: 17569256 [TBL] [Abstract][Full Text] [Related]
8. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359 [TBL] [Abstract][Full Text] [Related]
9. Androgen signaling and its interactions with other signaling pathways in prostate cancer. Kaarbø M; Klokk TI; Saatcioglu F Bioessays; 2007 Dec; 29(12):1227-38. PubMed ID: 18008377 [TBL] [Abstract][Full Text] [Related]
10. Interrogating androgen receptor function in recurrent prostate cancer. Zhang L; Johnson M; Le KH; Sato M; Ilagan R; Iyer M; Gambhir SS; Wu L; Carey M Cancer Res; 2003 Aug; 63(15):4552-60. PubMed ID: 12907631 [TBL] [Abstract][Full Text] [Related]
11. Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Meng TC; Lee MS; Lin MF Oncogene; 2000 May; 19(22):2664-77. PubMed ID: 10851066 [TBL] [Abstract][Full Text] [Related]
12. Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Veeramani S; Yuan TC; Chen SJ; Lin FF; Petersen JE; Shaheduzzaman S; Srivastava S; MacDonald RG; Lin MF Endocr Relat Cancer; 2005 Dec; 12(4):805-22. PubMed ID: 16322323 [TBL] [Abstract][Full Text] [Related]
13. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Malinowska K; Neuwirt H; Cavarretta IT; Bektic J; Steiner H; Dietrich H; Moser PL; Fuchs D; Hobisch A; Culig Z Endocr Relat Cancer; 2009 Mar; 16(1):155-69. PubMed ID: 19011039 [TBL] [Abstract][Full Text] [Related]
14. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Murthy S; Agoulnik IU; Weigel NL Prostate; 2005 Sep; 64(4):362-72. PubMed ID: 15754350 [TBL] [Abstract][Full Text] [Related]
16. Effect of type I growth factor receptor tyrosine kinase inhibitors on phosphorylation and transactivation activity of the androgen receptor in prostate cancer cells: Ligand-independent activation of the N-terminal domain of the androgen receptor. Sugita S; Kawashima H; Tanaka T; Kurisu T; Sugimura K; Nakatani T Oncol Rep; 2004 Jun; 11(6):1273-9. PubMed ID: 15138566 [TBL] [Abstract][Full Text] [Related]
17. Tyrphostin AG825 triggers p38 mitogen-activated protein kinase-dependent apoptosis in androgen-independent prostate cancer cells C4 and C4-2. Murillo H; Schmidt LJ; Tindall DJ Cancer Res; 2001 Oct; 61(20):7408-12. PubMed ID: 11606371 [TBL] [Abstract][Full Text] [Related]
18. Preclinical evaluation of targeted cytotoxic luteinizing hormone-releasing hormone analogue AN-152 in androgen-sensitive and insensitive prostate cancers. Letsch M; Schally AV; Szepeshazi K; Halmos G; Nagy A Clin Cancer Res; 2003 Oct; 9(12):4505-13. PubMed ID: 14555524 [TBL] [Abstract][Full Text] [Related]
19. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Craft N; Chhor C; Tran C; Belldegrun A; DeKernion J; Witte ON; Said J; Reiter RE; Sawyers CL Cancer Res; 1999 Oct; 59(19):5030-6. PubMed ID: 10519419 [TBL] [Abstract][Full Text] [Related]
20. FOXP1 is an androgen-responsive transcription factor that negatively regulates androgen receptor signaling in prostate cancer cells. Takayama K; Horie-Inoue K; Ikeda K; Urano T; Murakami K; Hayashizaki Y; Ouchi Y; Inoue S Biochem Biophys Res Commun; 2008 Sep; 374(2):388-93. PubMed ID: 18640093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]