These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10087065)

  • 1. Synaptic vesicle dynamics in rat fast and slow motor nerve terminals.
    Reid B; Slater CR; Bewick GS
    J Neurosci; 1999 Apr; 19(7):2511-21. PubMed ID: 10087065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent plasticity of transmitter release from nerve terminals in rat fast and slow muscles.
    Reid B; Martinov VN; Njå A; Lømo T; Bewick GS
    J Neurosci; 2003 Oct; 23(28):9340-8. PubMed ID: 14561861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43.
    Quigley PA; Msghina M; Govind CK; Atwood HL
    J Neurophysiol; 1999 Jan; 81(1):356-70. PubMed ID: 9914295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of Full-Collapse Vesicle Exocytosis for Synaptic Fatigue-Resistance at Rat Fast and Slow Muscle Neuromuscular Junctions.
    Rudling JE; Drever BD; Reid B; Bewick GS
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30004407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles.
    Wood SJ; Slater CR
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):165-76. PubMed ID: 9097941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic vesicle pools at diaphragm neuromuscular junctions vary with motoneuron soma, not axon terminal, inactivity.
    Mantilla CB; Rowley KL; Zhan WZ; Fahim MA; Sieck GC
    Neuroscience; 2007 Apr; 146(1):178-89. PubMed ID: 17346898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae.
    Kuromi H; Yoshihara M; Kidokoro Y
    Neurosci Res; 1997 Feb; 27(2):101-13. PubMed ID: 9100252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular movements of fluorescently labeled synaptic vesicles in frog motor nerve terminals during nerve stimulation.
    Betz WJ; Bewick GS; Ridge RM
    Neuron; 1992 Nov; 9(5):805-13. PubMed ID: 1418996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction.
    Betz WJ; Bewick GS
    J Physiol; 1993 Jan; 460():287-309. PubMed ID: 8387585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of synaptic vesicle exocytosis and recycling during neuromuscular weakness produced in mice by 2,4-dithiobiuret.
    Xu YF; Autio D; Rheuben MB; Atchison WD
    J Neurophysiol; 2002 Dec; 88(6):3243-58. PubMed ID: 12466444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal emergence of mature release properties in terminals of rat fast- and slow-twitch muscles.
    Bewick GS; Reid B; Jawaid S; Hatcher T; Shanley L
    Eur J Neurosci; 2004 Jun; 19(11):2967-76. PubMed ID: 15182303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles.
    Eken T; Gundersen K
    J Physiol; 1988 Aug; 402():651-69. PubMed ID: 3236252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Peculiarities of synaptic vesicle recycling in frog and mouse motor nerve terminals].
    Zefirov AL; Zakharov AV; Mukhamedzianov RD; Petrov AM
    Zh Evol Biokhim Fiziol; 2008; 44(6):603-12. PubMed ID: 19198161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of motor activities on the release of transmitter quanta from motor nerve terminals in mice.
    Taquahashi Y; Yonezawa K; Nishimura M
    J Vet Med Sci; 1999 May; 61(5):513-6. PubMed ID: 10379943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals.
    Wu LG; Betz WJ
    Biophys J; 1998 Jun; 74(6):3003-9. PubMed ID: 9635754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of neuromuscular abnormalities in neurotrophin-3-deficient mice.
    Sheard PW; Bewick GS; Woolley AG; Shaw J; Fisher L; Fong SW; Duxson MJ
    Eur J Neurosci; 2010 Jan; 31(1):29-41. PubMed ID: 20092553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in neuromuscular junction morphology during fast-to-slow transformation of rabbit skeletal muscles.
    Somasekhar T; Nordlander RH; Reiser PJ
    J Neurocytol; 1996 May; 25(5):315-31. PubMed ID: 8818976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom.
    Colasante C; Meunier FA; Kreger AS; Molgó J
    Eur J Neurosci; 1996 Oct; 8(10):2149-56. PubMed ID: 8921306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.