These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 10087158)

  • 21. Isoprenaline reverses the slow force responses to a length change in isolated rabbit papillary muscle.
    Kentish JC; Davey R; Largen P
    Pflugers Arch; 1992 Aug; 421(5):519-21. PubMed ID: 1334258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum.
    Kirchberber MA; Tada M; Katz AM
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():103-15. PubMed ID: 127351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The negative immunoregulatory effects of fluoxetine in relation to the cAMP-dependent PKA pathway.
    Maes M; Kenis G; Kubera M; De Baets M; Steinbusch H; Bosmans E
    Int Immunopharmacol; 2005 Mar; 5(3):609-18. PubMed ID: 15683856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preservation of the in vivo phosphorylation status of phospholamban in the heart: evidence for a site-specific difference in the dephosphorylation of phospholamban.
    Calaghan S; White E; Colyer J
    Biochem Biophys Res Commun; 1998 Jul; 248(3):701-5. PubMed ID: 9703990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of stretch on contraction and the Ca2+ transient in ferret ventricular muscles during hypoxia and acidosis.
    Hongo K; White E; Orchard CH
    Am J Physiol; 1995 Sep; 269(3 Pt 1):C690-7. PubMed ID: 7573399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of acidosis on the interval-force relation and mechanical restitution in ferret papillary muscle.
    McCall E; Orchard CH
    J Physiol; 1991 Jan; 432():45-63. PubMed ID: 1886064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bi-directional regulation of dephosphorylation of cAMP-dependent phosphorylated proteins by cAMP and calcium in permeabilized rat heart cells.
    Yoshida A; Takisawa H; Nakamura T
    J Biochem; 1989 Nov; 106(5):894-9. PubMed ID: 2559079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient tension responses of heart muscle in Ba2+ contracture to step length changes.
    Saeki Y; Sagawa K; Suga H
    Am J Physiol; 1980 Mar; 238(3):H340-7. PubMed ID: 7369378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of neurotransmitter release and cyclic AMP-dependent membrane phosphorylation in low voltage myocardial automaticity.
    Saxon ME; Safronova VG; Lazarev AV; Freidin AA; Kokoz YM
    Experientia; 1981 Jul; 37(7):731-4. PubMed ID: 6115761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium and cAMP in stimulus-response coupling.
    Rasmussen H
    Ann N Y Acad Sci; 1980; 356():346-53. PubMed ID: 6263153
    [No Abstract]   [Full Text] [Related]  

  • 31. The goldfish Carassius auratus: an emerging animal model for comparative cardiac research.
    Filice M; Cerra MC; Imbrogno S
    J Comp Physiol B; 2022 Jan; 192(1):27-48. PubMed ID: 34455483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational modifications of myofilament proteins involved in length-dependent prolongation of relaxation in rabbit right ventricular myocardium.
    Monasky MM; Taglieri DM; Jacobson AK; Haizlip KM; Solaro RJ; Janssen PM
    Arch Biochem Biophys; 2013 Jul; 535(1):22-9. PubMed ID: 23085150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium.
    Zhang YH; Dingle L; Hall R; Casadei B
    Biochim Biophys Acta; 2009 Jul; 1787(7):811-7. PubMed ID: 19361482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The slow force response to stretch in atrial and ventricular myocardium from human heart: functional relevance and subcellular mechanisms.
    Kockskämper J; von Lewinski D; Khafaga M; Elgner A; Grimm M; Eschenhagen T; Gottlieb PA; Sachs F; Pieske B
    Prog Biophys Mol Biol; 2008; 97(2-3):250-67. PubMed ID: 18466959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depolarization and neurotransmitter regulation of vasopressin gene expression in the rat suprachiasmatic nucleus in vitro.
    Rusnak M; Tóth ZE; House SB; Gainer H
    J Neurosci; 2007 Jan; 27(1):141-51. PubMed ID: 17202481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart.
    Calaghan S; White E
    J Physiol; 2004 Aug; 559(Pt 1):205-14. PubMed ID: 15235080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch.
    Belus A; White E
    J Physiol; 2003 Jan; 546(Pt 2):501-9. PubMed ID: 12527736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclic AMP but not phosphorylation of phospholamban contributes to the slow inotropic response to stretch in ferret papillary muscle.
    Calaghan SC; Colyer J; White E
    Pflugers Arch; 1999 Apr; 437(5):780-2. PubMed ID: 10087158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of angiotensin II, endothelin 1 and the endothelium to the slow inotropic response to stretch in ferret papillary muscle.
    Calaghan SC; White E
    Pflugers Arch; 2001 Jan; 441(4):514-20. PubMed ID: 11212215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of C-type natriuretic peptide on rat cardiac contractility.
    Brusq JM; Mayoux E; Guigui L; Kirilovsky J
    Br J Pharmacol; 1999 Sep; 128(1):206-12. PubMed ID: 10498853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.