These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10088587)

  • 1. Wheelchair propulsion: descriptive comparison of hemiplegic and two-hand patterns during selected activities.
    Kirby RL; Ethans KD; Duggan RE; Saunders-Green LA; Lugar JA; Harrison ER
    Am J Phys Med Rehabil; 1999; 78(2):131-5. PubMed ID: 10088587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manual wheelchair propulsion by people with hemiplegia: within-participant comparisons of forward versus backward techniques.
    Charbonneau R; Kirby RL; Thompson K
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1707-13. PubMed ID: 23500180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speed and physiological cost index of hemiplegic patients pedalling a wheelchair with both legs.
    Makino K; Wada F; Hachisuka K; Yoshimoto N; Ohmine S
    J Rehabil Med; 2005 Mar; 37(2):83-6. PubMed ID: 15788342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of functional electrical stimulation-assisted leg-propelled wheelchair in hemiplegic patients.
    Lo HC; Tsai KH; Yeh CY; Chang GL; Su FC
    Clin Biomech (Bristol); 2008; 23 Suppl 1():S67-73. PubMed ID: 18586367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheelchair-skill performance: controlled comparison between people with hemiplegia and able-bodied people simulating hemiplegia.
    Kirby RL; Adams CD; MacPhee AH; Coolen AL; Harrison ER; Eskes GA; Smith C; Macleod DA; Dupuis DJ
    Arch Phys Med Rehabil; 2005 Mar; 86(3):387-93. PubMed ID: 15759216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.
    Koontz AM; Roche BM; Collinger JL; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllability and physiological evaluation of three unilaterally-propelled wheelchairs for patients with hemiplegia.
    Tsai KH; Yeh CY; Lo HC; Lin SY
    J Rehabil Med; 2007 Nov; 39(9):693-7. PubMed ID: 17999006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of one-hand drivable manual wheelchair device for hemiplegic patients.
    Jung HS; Park G; Kim YS; Jung HS
    Appl Ergon; 2015 May; 48():11-21. PubMed ID: 25683527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measures of energy expenditure and comfort in an ESP wheelchair: a controlled trial using hemiplegic users'.
    Mandy A; Lesley S
    Disabil Rehabil Assist Technol; 2009 May; 4(3):137-42. PubMed ID: 19241200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
    Boninger ML; Souza AL; Cooper RA; Fitzgerald SG; Koontz AM; Fay BT
    Arch Phys Med Rehabil; 2002 May; 83(5):718-23. PubMed ID: 11994814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study.
    Morgan KA; Tucker SM; Klaesner JW; Engsberg JR
    J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase of muscle activities in hemiplegic lower extremity during driving a cycling wheelchair.
    Seki K; Sato M; Handa Y
    Tohoku J Exp Med; 2009 Oct; 219(2):129-38. PubMed ID: 19776530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of speed and grade on wheelchair propulsion hand pattern.
    Slowik JS; Requejo PS; Mulroy SJ; Neptune RR
    Clin Biomech (Bristol); 2015 Nov; 30(9):927-32. PubMed ID: 26228706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of abnormal muscle tone from hemiplegia on reclining wheelchair positioning: a sliding and pressure evaluation.
    Huang HC; Lin YS; Chen JM; Yeh CH; Chung KC
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):619-28. PubMed ID: 24104696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living.
    Leving MT; Horemans HLD; Vegter RJK; de Groot S; Bussmann JBJ; van der Woude LHV
    PLoS One; 2018; 13(4):e0194864. PubMed ID: 29641582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exploration of the experiences of Brazilian hemiplegic manual wheelchair users.
    Mandy A; Chesani F; Mezadri T
    Disabil Rehabil Assist Technol; 2020 Aug; 15(6):637-642. PubMed ID: 31232116
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.