BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10088718)

  • 1. New insights into the mechanisms of nuclear segmentation in human neutrophils.
    Sanchez JA; Wangh LJ
    J Cell Biochem; 1999 Apr; 73(1):1-10. PubMed ID: 10088718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent in situ hybridization (FISH) analysis of the relationship between chromosome location and nuclear morphology in human neutrophils.
    Aquiles Sanchez J; Karni RJ; Wangh LJ
    Chromosoma; 1997 Aug; 106(3):168-77. PubMed ID: 9233990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonrandom location and orientation of the inactive X chromosome in human neutrophil nuclei.
    Karni RJ; Wangh LJ; Sanchez JA
    Chromosoma; 2001 Aug; 110(4):267-74. PubMed ID: 11534818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of nuclear segments in human neutrophils and evidence against a role for microfilaments or microtubules in their genesis during differentiation of HL60 myelocytes.
    Campbell MS; Lovell MA; Gorbsky GJ
    J Leukoc Biol; 1995 Dec; 58(6):659-66. PubMed ID: 7499963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The segmentation of nuclei in circulating neutrophils of laboratory rats.
    Berger J
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(4):602-7. PubMed ID: 6184284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic effects on neutrophil segmentation. An in vitro phenomenon.
    Palmieri LJ; Schumann GB
    Acta Cytol; 1977; 21(2):287-9. PubMed ID: 67735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nuclear lamins in nuclear segmentation of human neutrophils.
    Yabuki M; Miyake T; Doi Y; Fujiwara T; Hamazaki K; Yoshioka T; Horton AA; Utsumi K
    Physiol Chem Phys Med NMR; 1999; 31(2):77-84. PubMed ID: 10816760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Neutrophil Nucleus and Its Role in Neutrophilic Function.
    Carvalho LO; Aquino EN; Neves AC; Fontes W
    J Cell Biochem; 2015 Sep; 116(9):1831-6. PubMed ID: 25727365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Appearance of nuclear formations of the "drumstick" type in neutrophilic leukocytes under the influence of neonatal thymectomy in male-rats].
    Beliaeva IV; Konotov TA
    Tsitologiia; 1977; 19(1):57-60. PubMed ID: 888194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-response uncoupling in the neutrophil. Adenosine A2-receptor occupancy inhibits the sustained, but not the early, events of stimulus transduction in human neutrophils by a mechanism independent of actin-filament formation.
    Cronstein BN; Haines KA
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):631-5. PubMed ID: 1311169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image analysis of neutrophil nuclear morphology: Learning about phenotypic range and its reliable analysis from patients with pelger-Huët-anomaly and treated with colchicine.
    Schnipper N; Stassen HH; Kallinich T; Sperling K; Hoffmann K
    Cytometry B Clin Cytom; 2017 Nov; 92(6):541-549. PubMed ID: 27684937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear segmentation facilitates neutrophil migration.
    Shen C; Mulder E; Buitenwerf W; Postat J; Jansen A; Kox M; Mandl JN; Vrisekoop N
    J Cell Sci; 2023 Jun; 136(11):. PubMed ID: 37288767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutting Edge:
    Whitmore LC; Weems MN; Allen LH
    J Immunol; 2017 Mar; 198(5):1793-1797. PubMed ID: 28148734
    [No Abstract]   [Full Text] [Related]  

  • 14. Morphology of human neutrophils: a comparison of cryofixation, routine gluteraldehyde fixation, and the effects of dimethyl sulfoxide.
    Gilbert CS; Parmley RT
    Anat Rec; 1998 Oct; 252(2):254-63. PubMed ID: 9776079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative Activity of GABP with PU.1 or C/EBPε Regulates Lamin B Receptor Gene Expression, Implicating Their Roles in Granulocyte Nuclear Maturation.
    Malu K; Garhwal R; Pelletier MG; Gotur D; Halene S; Zwerger M; Yang ZF; Rosmarin AG; Gaines P
    J Immunol; 2016 Aug; 197(3):910-22. PubMed ID: 27342846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colocalization of neutrophils, extracellular DNA and coagulation factors during NETosis: Development and utility of an immunofluorescence-based microscopy platform.
    Healy LD; Puy C; Itakura A; Chu T; Robinson DK; Bylund A; Phillips KG; Gardiner EE; McCarty OJ
    J Immunol Methods; 2016 Aug; 435():77-84. PubMed ID: 27286714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher-order chromatin structure of human granulocytes.
    Bártová E; Kozubek S; Jirsová P; Kozubek M; Lukásová E; Skalníková M; Cafourková A; Koutná I; Paseková R
    Chromosoma; 2001 Sep; 110(5):360-70. PubMed ID: 11685536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear Deformation During Neutrophil Migration at Sites of Inflammation.
    Salvermoser M; Begandt D; Alon R; Walzog B
    Front Immunol; 2018; 9():2680. PubMed ID: 30505310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemotactic peptide-induced changes of intermediate filament organization in neutrophils during granule secretion: role of cyclic guanosine monophosphate.
    Pryzwansky KB; Merricks EP
    Mol Biol Cell; 1998 Oct; 9(10):2933-47. PubMed ID: 9763453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis.
    Malech HL; Root RK; Gallin JI
    J Cell Biol; 1977 Dec; 75(3):666-93. PubMed ID: 562885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.