These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 10089210)

  • 1. N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants.
    Cabanes-Macheteau M; Fitchette-Lainé AC; Loutelier-Bourhis C; Lange C; Vine ND; Ma JK; Lerouge P; Faye L
    Glycobiology; 1999 Apr; 9(4):365-72. PubMed ID: 10089210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.
    Matsuo K; Kagaya U; Itchoda N; Tabayashi N; Matsumura T
    J Biosci Bioeng; 2014 Oct; 118(4):448-54. PubMed ID: 24794851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants.
    Ma JK; Lehner T; Stabila P; Fux CI; Hiatt A
    Eur J Immunol; 1994 Jan; 24(1):131-8. PubMed ID: 8020548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco.
    Drake PM; Barbi T; Sexton A; McGowan E; Stadlmann J; Navarre C; Paul MJ; Ma JK
    FASEB J; 2009 Oct; 23(10):3581-9. PubMed ID: 19470800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of mouse monoclonal antibody with galactose-extended sugar chain by suspension cultured tobacco BY2 cells expressing human beta(1,4)-galactosyltransferase.
    Fujiyama K; Furukawa A; Katsura A; Misaki R; Omasa T; Seki T
    Biochem Biophys Res Commun; 2007 Jun; 358(1):85-91. PubMed ID: 17481579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and characterization of an anti-(hepatitis B surface antigen) glycosylated mouse antibody in transgenic tobacco (Nicotiana tabacum) plants and its use in the immunopurification of its target antigen.
    Ramírez N; Rodríguez M; Ayala M; Cremata J; Pérez M; Martínez A; Linares M; Hevia Y; Páez R; Valdés R; Gavilondo JV; Selman-Housein G
    Biotechnol Appl Biochem; 2003 Dec; 38(Pt 3):223-30. PubMed ID: 12797866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galactose-extended glycans of antibodies produced by transgenic plants.
    Bakker H; Bardor M; Molthoff JW; Gomord V; Elbers I; Stevens LH; Jordi W; Lommen A; Faye L; Lerouge P; Bosch D
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2899-904. PubMed ID: 11226338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans.
    Triguero A; Cabrera G; Cremata JA; Yuen CT; Wheeler J; Ramírez NI
    Plant Biotechnol J; 2005 Jul; 3(4):449-57. PubMed ID: 17173632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential N-glycosylation of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently induces similar in vivo stability in mice.
    Triguero A; Cabrera G; Rodríguez M; Soto J; Zamora Y; Pérez M; Wormald MR; Cremata JA
    Plant Biotechnol J; 2011 Dec; 9(9):1120-30. PubMed ID: 21819534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled glycosylation of therapeutic antibodies in plants.
    Tekoah Y; Ko K; Koprowski H; Harvey DJ; Wormald MR; Dwek RA; Rudd PM
    Arch Biochem Biophys; 2004 Jun; 426(2):266-78. PubMed ID: 15158677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves.
    Elbers IJ; Stoopen GM; Bakker H; Stevens LH; Bardor M; Molthoff JW; Jordi WJ; Bosch D; Lommen A
    Plant Physiol; 2001 Jul; 126(3):1314-22. PubMed ID: 11457982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclonal C5-1 antibody produced in transgenic alfalfa plants exhibits a N-glycosylation that is homogenous and suitable for glyco-engineering into human-compatible structures.
    Bardor M; Loutelier-Bourhis C; Paccalet T; Cosette P; Fitchette AC; Vézina LP; Trépanier S; Dargis M; Lemieux R; Lange C; Faye L; Lerouge P
    Plant Biotechnol J; 2003 Nov; 1(6):451-62. PubMed ID: 17134403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and enzymatic N-glycan release comparison for N-glycan profiling of monoclonal antibodies expressed in plants.
    Triguero A; Cabrera G; Royle L; Harvey DJ; Rudd PM; Dwek RA; Bardor M; Lerouge P; Cremata JA
    Anal Biochem; 2010 May; 400(2):173-83. PubMed ID: 20109437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures.
    Lonoce C; Salem R; Marusic C; Jutras PV; Scaloni A; Salzano AM; Lucretti S; Steinkellner H; Benvenuto E; Donini M
    Biotechnol J; 2016 Sep; 11(9):1209-20. PubMed ID: 27313150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-terminal vacuolar sorting signal at the mouse antibody alters the N-linked glycosylation pattern in suspension-cultured tobacco BY2 cells.
    Misaki R; Sakai Y; Omasa T; Fujiyama K; Seki T
    J Biosci Bioeng; 2011 Nov; 112(5):476-84. PubMed ID: 21802986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits.
    Jin C; Altmann F; Strasser R; Mach L; Schähs M; Kunert R; Rademacher T; Glössl J; Steinkellner H
    Glycobiology; 2008 Mar; 18(3):235-41. PubMed ID: 18203810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro galactosylation of human IgG at 1 kg scale using recombinant galactosyltransferase.
    Warnock D; Bai X; Autote K; Gonzales J; Kinealy K; Yan B; Qian J; Stevenson T; Zopf D; Bayer RJ
    Biotechnol Bioeng; 2005 Dec; 92(7):831-42. PubMed ID: 16187338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transient tobacco expression system coupled to MALDI-TOF-MS allows validation of the impact of differential targeting on structure and activity of a recombinant therapeutic glycoprotein produced in plants.
    Mokrzycki-Issartel N; Bouchon B; Farrer S; Berland P; Laparra H; Madelmont JC; Theisen M
    FEBS Lett; 2003 Sep; 552(2-3):170-6. PubMed ID: 14527682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monomeric IgA can be produced in planta as efficient as IgG, yet receives different N-glycans.
    Westerhof LB; Wilbers RH; van Raaij DR; Nguyen DL; Goverse A; Henquet MG; Hokke CH; Bosch D; Bakker J; Schots A
    Plant Biotechnol J; 2014 Dec; 12(9):1333-42. PubMed ID: 25196296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of secretory IgA antibodies in plants.
    Larrick JW; Yu L; Naftzger C; Jaiswal S; Wycoff K
    Biomol Eng; 2001 Oct; 18(3):87-94. PubMed ID: 11566600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.