These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 10089569)

  • 21. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H
    Petrick HL; Pignanelli C; Barbeau PA; Churchward-Venne TA; Dennis KMJH; van Loon LJC; Burr JF; Goossens GH; Holloway GP
    J Physiol; 2019 Aug; 597(15):3985-3997. PubMed ID: 31194254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunosuppressive treatment affects cardiac and skeletal muscle mitochondria by the toxic effect of vehicle.
    Sanchez H; Bigard X; Veksler V; Mettauer B; Lampert E; Lonsdorfer J; Ventura-Clapier R
    J Mol Cell Cardiol; 2000 Feb; 32(2):323-31. PubMed ID: 10722807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress.
    Tonkonogi M; Walsh B; Svensson M; Sahlin K
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):379-88. PubMed ID: 11034627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship of recovery from intensive exercise to the oxidative potential of skeletal muscle.
    Jansson E; Dudley GA; Norman B; Tesch PA
    Acta Physiol Scand; 1990 May; 139(1):147-52. PubMed ID: 2356745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate.
    Bakkman L; Sahlin K; Holmberg HC; Tonkonogi M
    Acta Physiol (Oxf); 2007 Jul; 190(3):243-51. PubMed ID: 17521315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium content and respiratory control index of skeletal muscle mitochondria during exercise and recovery.
    Madsen K; Ertbjerg P; Djurhuus MS; Pedersen PK
    Am J Physiol; 1996 Dec; 271(6 Pt 1):E1044-50. PubMed ID: 8997224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans.
    Thomas C; Sirvent P; Perrey S; Raynaud E; Mercier J
    J Appl Physiol (1985); 2004 Dec; 97(6):2132-8. PubMed ID: 15208291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of eccentric versus concentric exercise training on mitochondrial function.
    Isner-Horobeti ME; Rasseneur L; Lonsdorfer-Wolf E; Dufour SP; Doutreleau S; Bouitbir J; Zoll J; Kapchinsky S; Geny B; Daussin FN; Burelle Y; Richard R
    Muscle Nerve; 2014 Nov; 50(5):803-11. PubMed ID: 24639213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle.
    Rasmussen UF; Krustrup P; Bangsbo J; Rasmussen HN
    Pflugers Arch; 2001 Nov; 443(2):180-7. PubMed ID: 11713642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced mitochondrial sensitivity to creatine in rats bred for high aerobic capacity.
    Walsh B; Hooks RB; Hornyak JE; Koch LG; Britton SL; Hogan MC
    J Appl Physiol (1985); 2006 Jun; 100(6):1765-9. PubMed ID: 16424066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low intensity exercise in humans accelerates mitochondrial ATP production and pulmonary oxygen kinetics during subsequent more intense exercise.
    Campbell-O'Sullivan SP; Constantin-Teodosiu D; Peirce N; Greenhaff PL
    J Physiol; 2002 Feb; 538(Pt 3):931-9. PubMed ID: 11826176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse.
    Reilly BD; Hickey AJ; Cramp RL; Franklin CE
    J Exp Biol; 2014 Apr; 217(Pt 7):1087-93. PubMed ID: 24311816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease.
    Pipinos II; Sharov VG; Shepard AD; Anagnostopoulos PV; Katsamouris A; Todor A; Filis KA; Sabbah HN
    J Vasc Surg; 2003 Oct; 38(4):827-32. PubMed ID: 14560237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ischaemic preconditioning blunts exercise-induced mitochondrial dysfunction, speeds oxygen uptake kinetics but does not alter severe-intensity exercise capacity.
    Peden DL; Mitchell EA; Bailey SJ; Ferguson RA
    Exp Physiol; 2022 Nov; 107(11):1241-1254. PubMed ID: 36030522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity.
    Layec G; Blain GM; Rossman MJ; Park SY; Hart CR; Trinity JD; Gifford JR; Sidhu SK; Weavil JC; Hureau TJ; Amann M; Richardson RS
    Med Sci Sports Exerc; 2018 Dec; 50(12):2409-2417. PubMed ID: 30102675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis.
    Krustrup P; Ferguson RA; Kjaer M; Bangsbo J
    J Physiol; 2003 May; 549(Pt 1):255-69. PubMed ID: 12651917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake.
    Leppik JA; Aughey RJ; Medved I; Fairweather I; Carey MF; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1414-23. PubMed ID: 15155714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.
    Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A
    Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PlanHab
    Salvadego D; Keramidas ME; Kölegård R; Brocca L; Lazzer S; Mavelli I; Rittweger J; Eiken O; Mekjavic IB; Grassi B
    J Physiol; 2018 Aug; 596(15):3341-3355. PubMed ID: 29665013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.