BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 10089599)

  • 1. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P; Keefe DH; Simmons JL; Gorga MP
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Otosclerosis with Aural Acoustical Tests of Absorbance, Group Delay, Acoustic Reflex Threshold, and Otoacoustic Emissions.
    Keefe DH; Archer KL; Schmid KK; Fitzpatrick DF; Feeney MP; Hunter LL
    J Am Acad Audiol; 2017 Oct; 28(9):838-860. PubMed ID: 28972472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wideband aural acoustic absorbance predicts conductive hearing loss in children.
    Keefe DH; Sanford CA; Ellison JC; Fitzpatrick DF; Gorga MP
    Int J Audiol; 2012 Dec; 51(12):880-91. PubMed ID: 23072655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transmittance predicts conductive hearing loss in older children and adults.
    Keefe DH; Simmons JL
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3217-38. PubMed ID: 14714804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC; Keefe DH
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults.
    Keefe DH; Hunter LL; Feeney MP; Fitzpatrick DF
    J Acoust Soc Am; 2015 Dec; 138(6):3625-53. PubMed ID: 26723319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults.
    Rosowski JJ; Nakajima HH; Hamade MA; Mahfoud L; Merchant GR; Halpin CF; Merchant SN
    Ear Hear; 2012; 33(1):19-34. PubMed ID: 21857517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy reflectance and tympanometry in normal and otosclerotic ears.
    Shahnaz N; Bork K; Polka L; Longridge N; Bell D; Westerberg BD
    Ear Hear; 2009 Apr; 30(2):219-33. PubMed ID: 19194289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound-conduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: test performance of wideband acoustic transfer functions and 1-kHz tympanometry.
    Sanford CA; Keefe DH; Liu YW; Fitzpatrick D; McCreery RW; Lewis DE; Gorga MP
    Ear Hear; 2009 Dec; 30(6):635-52. PubMed ID: 19701089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry.
    Keefe DH; Levi E
    Ear Hear; 1996 Oct; 17(5):361-73. PubMed ID: 8909884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study.
    Nakajima HH; Pisano DV; Roosli C; Hamade MA; Merchant GR; Mahfoud L; Halpin CF; Rosowski JJ; Merchant SN
    Ear Hear; 2012; 33(1):35-43. PubMed ID: 21857516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds.
    Vander Werff KR; Prieve BA; Georgantas LM
    Ear Hear; 2009 Jun; 30(3):350-68. PubMed ID: 19322084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory steady-state responses to bone conduction stimuli in children with hearing loss.
    Swanepoel de W; Ebrahim S; Friedland P; Swanepoel A; Pottas L
    Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1861-71. PubMed ID: 18963045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the type B tympanogram can predict the magnitude of the air-bone gap in otitis media with effusion.
    Sichel JY; Priner Y; Weiss S; Levi H; Barshtein G; Eliashar R; Elidan J
    Ann Otol Rhinol Laryngol; 2003 May; 112(5):450-4. PubMed ID: 12784986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distortion product otoacoustic emission test performance for a priori criteria and for multifrequency audiometric standards.
    Gorga MP; Neely ST; Dorn PA
    Ear Hear; 1999 Aug; 20(4):345-62. PubMed ID: 10466570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wideband reflectance in Down syndrome.
    Soares JC; Urosas JG; Calarga KS; Pichelli TS; Limongi SC; Shahnaz N; Carvallo RM
    Int J Pediatr Otorhinolaryngol; 2016 Aug; 87():164-71. PubMed ID: 27368466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air conduction, bone conduction, and soft tissue conduction audiograms in normal hearing and simulated hearing losses.
    Adelman C; Cohen A; Regev-Cohen A; Chordekar S; Fraenkel R; Sohmer H
    J Am Acad Audiol; 2015 Jan; 26(1):101-8. PubMed ID: 25597465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inner Ear Excitation in Normal and Postmastoidectomy Participants by Fluid Stimulation in the Absence of Air- and Bone-Conduction Mechanisms.
    Ronen O; Geal-Dor M; Kaufmann-Yehezkely M; Perez R; Chordekar S; Adelman C; Sohmer H
    J Am Acad Audiol; 2017 Feb; 28(2):152-160. PubMed ID: 28240982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standard and multifrequency tympanometry in normal and otosclerotic ears.
    Shahnaz N; Polka L
    Ear Hear; 1997 Aug; 18(4):326-41. PubMed ID: 9288478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.