These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 10089611)
1. Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing. Fu QJ; Shannon RV J Acoust Soc Am; 1999 Mar; 105(3):1889-900. PubMed ID: 10089611 [TBL] [Abstract][Full Text] [Related]
2. Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant. Fu QJ; Shannon RV Ear Hear; 1999 Aug; 20(4):321-31. PubMed ID: 10466568 [TBL] [Abstract][Full Text] [Related]
3. Recognition of spectrally asynchronous speech by normal-hearing listeners and Nucleus-22 cochlear implant users. Fu QJ; Galvin JJ J Acoust Soc Am; 2001 Mar; 109(3):1166-72. PubMed ID: 11303930 [TBL] [Abstract][Full Text] [Related]
4. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. Fu QJ; Shannon RV; Wang X J Acoust Soc Am; 1998 Dec; 104(6):3586-96. PubMed ID: 9857517 [TBL] [Abstract][Full Text] [Related]
5. Frequency mapping in cochlear implants. Fu QJ; Shannon RV Ear Hear; 2002 Aug; 23(4):339-48. PubMed ID: 12195176 [TBL] [Abstract][Full Text] [Related]
6. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech. Li T; Galvin JJ; Fu QJ Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293 [TBL] [Abstract][Full Text] [Related]
8. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users. Fu QJ; Shannon RV Ear Hear; 2000 Jun; 21(3):227-35. PubMed ID: 10890731 [TBL] [Abstract][Full Text] [Related]
9. Effect of training rate on recognition of spectrally shifted speech. Nogaki G; Fu QJ; Galvin JJ Ear Hear; 2007 Apr; 28(2):132-40. PubMed ID: 17496666 [TBL] [Abstract][Full Text] [Related]
10. Spectral and temporal cues in cochlear implant speech perception. Nie K; Barco A; Zeng FG Ear Hear; 2006 Apr; 27(2):208-17. PubMed ID: 16518146 [TBL] [Abstract][Full Text] [Related]
11. Individual Variability in Recalibrating to Spectrally Shifted Speech: Implications for Cochlear Implants. Smith ML; Winn MB Ear Hear; 2021; 42(5):1412-1427. PubMed ID: 33795617 [TBL] [Abstract][Full Text] [Related]
12. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. Friesen LM; Shannon RV; Baskent D; Wang X J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582 [TBL] [Abstract][Full Text] [Related]
13. Perceptual adaptation to spectrally shifted vowels: training with nonlexical labels. Li T; Fu QJ J Assoc Res Otolaryngol; 2007 Mar; 8(1):32-41. PubMed ID: 17131213 [TBL] [Abstract][Full Text] [Related]
14. Minimum spectral contrast needed for vowel identification by normal hearing and cochlear implant listeners. Loizou PC; Poroy O J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1619-27. PubMed ID: 11572371 [TBL] [Abstract][Full Text] [Related]
15. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. Fishman KE; Shannon RV; Slattery WH J Speech Lang Hear Res; 1997 Oct; 40(5):1201-15. PubMed ID: 9328890 [TBL] [Abstract][Full Text] [Related]
16. The effect of frequency allocation on phoneme recognition with the nucleus 22 cochlear implant. Friesen LM; Shannon RV; Slattery WH Am J Otol; 1999 Nov; 20(6):729-34. PubMed ID: 10565716 [TBL] [Abstract][Full Text] [Related]
17. Speech recognition under conditions of frequency-place compression and expansion. Baskent D; Shannon RV J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2064-76. PubMed ID: 12703717 [TBL] [Abstract][Full Text] [Related]
18. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation. Fu QJ; Nogaki G; Galvin JJ J Assoc Res Otolaryngol; 2005 Jun; 6(2):180-9. PubMed ID: 15952053 [TBL] [Abstract][Full Text] [Related]
19. Speech recognition by normal-hearing and cochlear implant listeners as a function of intensity resolution. Loizou PC; Dorman M; Poroy O; Spahr T J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2377-87. PubMed ID: 11108378 [TBL] [Abstract][Full Text] [Related]
20. Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant. Fu QJ; Shannon RV Ear Hear; 1999 Aug; 20(4):332-44. PubMed ID: 10466569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]