These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10090661)

  • 1. Firing properties of chopper and delay neurons in the lateral superior olive of the rat.
    Adam TJ; Schwarz DW; Finlayson PG
    Exp Brain Res; 1999 Feb; 124(4):489-502. PubMed ID: 10090661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane properties of principal neurons of the lateral superior olive.
    Adam TJ; Finlayson PG; Schwarz DW
    J Neurophysiol; 2001 Aug; 86(2):922-34. PubMed ID: 11495961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological and morphological properties of neurons in the rat superior colliculus. I. Neurons in the intermediate layer.
    Saito Y; Isa T
    J Neurophysiol; 1999 Aug; 82(2):754-67. PubMed ID: 10444674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.
    Alonso A; Klink R
    J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input.
    Kim YI; Dudek FE
    J Physiol; 1993 May; 464():229-43. PubMed ID: 8229799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro.
    Wu SH; Kelly JB
    J Neurophysiol; 1991 Feb; 65(2):230-46. PubMed ID: 2016640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons.
    Llinás RR; Alonso A
    J Neurophysiol; 1992 Oct; 68(4):1307-20. PubMed ID: 1279134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig.
    Stabler SE; Palmer AR; Winter IM
    J Neurophysiol; 1996 Sep; 76(3):1667-88. PubMed ID: 8890284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body.
    Banks MI; Smith PH
    J Neurosci; 1992 Jul; 12(7):2819-37. PubMed ID: 1351938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory synaptic inputs with slower kinetics than LSO principal neurons.
    Sterenborg JC; Pilati N; Sheridan CJ; Uchitel OD; Forsythe ID; Barnes-Davies M
    Hear Res; 2010 Dec; 270(1-2):119-26. PubMed ID: 20813177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiology of regular firing cells in the rat perirhinal cortex.
    D'Antuono M; Biagini G; Tancredi V; Avoli M
    Hippocampus; 2001; 11(6):662-72. PubMed ID: 11811660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice.
    Smith PH
    J Neurophysiol; 1995 Apr; 73(4):1653-67. PubMed ID: 7643173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral and medial olivocochlear neurons have distinct electrophysiological properties in the rat brain slice.
    Fujino K; Koyano K; Ohmori H
    J Neurophysiol; 1997 May; 77(5):2788-804. PubMed ID: 9163393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization of lateral cell groups of cat superior olivary complex.
    Tsuchitani C
    J Neurophysiol; 1977 Mar; 40(2):296-318. PubMed ID: 845625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bursting and oscillating neurons of the cat basolateral amygdaloid complex in vivo: electrophysiological properties and morphological features.
    Paré D; Pape HC; Dong J
    J Neurophysiol; 1995 Sep; 74(3):1179-91. PubMed ID: 7500142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro.
    Chandler SH; Hsaio CF; Inoue T; Goldberg LJ
    J Neurophysiol; 1994 Jan; 71(1):129-45. PubMed ID: 7908952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological properties of central medial and central lateral amygdala neurons.
    Martina M; Royer S; Paré D
    J Neurophysiol; 1999 Oct; 82(4):1843-54. PubMed ID: 10515973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive.
    Barnes-Davies M; Barker MC; Osmani F; Forsythe ID
    Eur J Neurosci; 2004 Jan; 19(2):325-33. PubMed ID: 14725627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.