BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 10090740)

  • 41. Eosinophil-dependent bromination in the pathogenesis of asthma.
    Heinecke JW
    J Clin Invest; 2000 May; 105(10):1331-2. PubMed ID: 10811837
    [No Abstract]   [Full Text] [Related]  

  • 42. [The measurement of superoxide generation and eosinophil peroxidase (EPO) from eosinophils].
    Okada C; Soda R; Takahashi K
    Nihon Rinsho; 1993 Mar; 51(3):730-5. PubMed ID: 8388065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance.
    Skaff O; Pattison DI; Davies MJ
    Biochem J; 2009 Jul; 422(1):111-7. PubMed ID: 19492988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of chloride on modification of unsaturated phosphatidylcholines by the myeloperoxidase/hydrogen peroxide/bromide system.
    Panasenko OM; Vakhrusheva T; Tretyakov V; Spalteholz H; Arnhold J
    Chem Phys Lipids; 2007; 149(1-2):40-51. PubMed ID: 17604010
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of aromatic amino acid oxidation, protein unfolding, and aggregation in the hypobromous acid-induced inactivation of trypsin inhibitor and lysozyme.
    Hawkins CL; Davies MJ
    Chem Res Toxicol; 2005 Nov; 18(11):1669-77. PubMed ID: 16300375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species.
    Brennan ML; Wu W; Fu X; Shen Z; Song W; Frost H; Vadseth C; Narine L; Lenkiewicz E; Borchers MT; Lusis AJ; Lee JJ; Lee NA; Abu-Soud HM; Ischiropoulos H; Hazen SL
    J Biol Chem; 2002 May; 277(20):17415-27. PubMed ID: 11877405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantification of 3-nitrotyrosine levels using a benchtop ion trap mass spectrometry method.
    Nicholls SJ; Shen Z; Fu X; Levison BS; Hazen SL
    Methods Enzymol; 2005; 396():245-66. PubMed ID: 16291237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bactericidal activity of eosinophil peroxidase.
    Jong EC; Henderson WR; Klebanoff SJ
    J Immunol; 1980 Mar; 124(3):1378-82. PubMed ID: 6987309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.
    Wright PJ; English AM
    J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase by dapsone.
    Bozeman PM; Learn DB; Thomas EL
    Biochem Pharmacol; 1992 Aug; 44(3):553-63. PubMed ID: 1324677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of eosinophil peroxidase in host defense and disease pathology.
    Wang J; Slungaard A
    Arch Biochem Biophys; 2006 Jan; 445(2):256-60. PubMed ID: 16297853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactivity of Tyr-Leu and Leu-Tyr dipeptides: identification of oxidation products by liquid chromatography-tandem mass spectrometry.
    Fonseca C; Domingues MR; Simões C; Amado F; Domingues P
    J Mass Spectrom; 2009 May; 44(5):681-93. PubMed ID: 19125397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extensive eosinophil degranulation and peroxidase-mediated oxidation of airway proteins do not occur in a mouse ovalbumin-challenge model of pulmonary inflammation.
    Denzler KL; Borchers MT; Crosby JR; Cieslewicz G; Hines EM; Justice JP; Cormier SA; Lindenberger KA; Song W; Wu W; Hazen SL; Gleich GJ; Lee JJ; Lee NA
    J Immunol; 2001 Aug; 167(3):1672-82. PubMed ID: 11466391
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and reactivity toward nucleophilic amino acids of 2,5-[13C]-dimethyl-p-benzoquinonediimine.
    Eilstein J; Giménez-Arnau E; Duché D; Rousset F; Lepoittevin JP
    Chem Res Toxicol; 2006 Sep; 19(9):1248-56. PubMed ID: 16978031
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Irreversible oxidation of ferricytochrome c by lignin peroxidase.
    Sheng D; Gold MH
    Biochemistry; 1998 Feb; 37(7):2029-36. PubMed ID: 9485329
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics.
    Aldridge RE; Chan T; van Dalen CJ; Senthilmohan R; Winn M; Venge P; Town GI; Kettle AJ
    Free Radic Biol Med; 2002 Sep; 33(6):847-56. PubMed ID: 12208372
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidation of homovanillic acid as a selective assay for eosinophil peroxidase in eosinophil peroxidase-myeloperoxidase mixtures and its use in the detection of human eosinophil peroxidase deficiency.
    Menegazzi R; Zabucchi G; Zuccato P; Cramer R; Piccinini C; Patriarca P
    J Immunol Methods; 1991 Mar; 137(1):55-63. PubMed ID: 1849156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase.
    Battistuzzi G; Bellei M; Vlasits J; Banerjee S; Furtmüller PG; Sola M; Obinger C
    Arch Biochem Biophys; 2010 Feb; 494(1):72-7. PubMed ID: 19944669
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism for the anti-thyroid action of minocycline.
    Doerge DR; Divi RL; Deck J; Taurog A
    Chem Res Toxicol; 1997 Jan; 10(1):49-58. PubMed ID: 9074802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.