BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10091337)

  • 1. Changes in three-dimensional architecture of microfilaments in cultured vascular smooth muscle cells during phenotypic modulation.
    Song J; Rolfe BE; Campbell JH; Campbell GR
    Tissue Cell; 1998 Jun; 30(3):324-33. PubMed ID: 10091337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous distribution of isoactins in cultured vascular smooth muscle cells does not reflect segregation of contractile and cytoskeletal domains.
    Song J; Worth NF; Rolfe BE; Campbell GR; Campbell JH
    J Histochem Cytochem; 2000 Nov; 48(11):1441-52. PubMed ID: 11036087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins.
    Worth NF; Rolfe BE; Song J; Campbell GR
    Cell Motil Cytoskeleton; 2001 Jul; 49(3):130-45. PubMed ID: 11668582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rho expression and activation in vascular smooth muscle cells.
    Worth NF; Campbell GR; Campbell JH; Rolfe BE
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):189-200. PubMed ID: 15468163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reorganization of structural proteins in vascular smooth muscle cells grown in collagen gel and basement membrane matrices (Matrigel): a comparison with their in situ counterparts.
    Song J; Rolfe BE; Hayward IP; Campbell GR; Campbell JH
    J Struct Biol; 2001 Jan; 133(1):43-54. PubMed ID: 11356063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling.
    Han M; Dong LH; Zheng B; Shi JH; Wen JK; Cheng Y
    Life Sci; 2009 Mar; 84(13-14):394-401. PubMed ID: 19073196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotype modulation in primary cultures of arterial smooth-muscle cells: reorganization of the cytoskeleton and activation of synthetic activities.
    Palmberg L; Sjölund M; Thyberg J
    Differentiation; 1985; 29(3):275-83. PubMed ID: 2416624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in expression and organization of smooth-muscle-specific alpha-actin during fibronectin-mediated modulation of arterial smooth muscle cell phenotype.
    Hedin U; Sjölund M; Hultgårdh-Nilsson A; Thyberg J
    Differentiation; 1990 Sep; 44(3):222-31. PubMed ID: 1703095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for rho in smooth muscle phenotypic regulation.
    Worth NF; Campbell GR; Rolfe BE
    Ann N Y Acad Sci; 2001 Dec; 947():316-22. PubMed ID: 11795282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remodeling of the vascular tunica media is essential for development of collateral vessels in the canine heart.
    Cai WJ; Kocsis E; Wu X; Rodríguez M; Luo X; Schaper W; Schaper J
    Mol Cell Biochem; 2004 Sep; 264(1-2):201-10. PubMed ID: 15544049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently.
    Thyberg J; Hultgårdh-Nilsson A
    Cell Tissue Res; 1994 May; 276(2):263-71. PubMed ID: 8020062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma.
    Aikawa M; Rabkin E; Voglic SJ; Shing H; Nagai R; Schoen FJ; Libby P
    Circ Res; 1998 Nov; 83(10):1015-26. PubMed ID: 9815149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations of microfilament bundles in living cells microinjected with fluorescently labelled contractile proteins.
    Sanger JM; Mittal B; Pochapin M; Sanger JW
    J Cell Sci Suppl; 1986; 5():17-44. PubMed ID: 3477551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A variant derived from rabbit aortic smooth muscle: phenotype modulation and restoration of smooth muscle characteristics in cells in culture.
    Sasaki Y; Uchida T; Sasaki Y
    J Biochem; 1989 Dec; 106(6):1009-18. PubMed ID: 2628418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose.
    Idowu BD; Knight MM; Bader DL; Lee DA
    Histochem J; 2000 Mar; 32(3):165-74. PubMed ID: 10841311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vascular smooth muscle cell phenotypic modulation at the aortic branch in atherogenesis.
    Yutani C; Fujita H; Takaichi S; Yamamoto A
    Front Med Biol Eng; 1993; 5(2):143-6. PubMed ID: 8241031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cell activation of the smooth muscle cell phosphoinositide 3-kinase/Akt pathway promotes differentiation.
    Brown DJ; Rzucidlo EM; Merenick BL; Wagner RJ; Martin KA; Powell RJ
    J Vasc Surg; 2005 Mar; 41(3):509-16. PubMed ID: 15838487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-cadherin promotes vascular smooth muscle cell dedifferentiation via a GSK3β-inactivation dependent mechanism.
    Frismantiene A; Dasen B; Pfaff D; Erne P; Resink TJ; Philippova M
    Cell Signal; 2016 May; 28(5):516-530. PubMed ID: 26907733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on aorta during development. I. Fetal rabbit aorta under ex vivo and in vitro conditions: rapid changes in smooth muscle cell phenotype, cell proliferation and cholesterol content with organ culture.
    Sprinkle DJ; Subbiah MT
    Atherosclerosis; 1987 Sep; 67(1):57-69. PubMed ID: 3675706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.