These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10091863)

  • 1. Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells.
    Soll DR
    Comput Med Imaging Graph; 1999; 23(1):3-14. PubMed ID: 10091863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-assisted reconstruction and motion analysis of the three-dimensional cell.
    Soll DR; Wessels D; Heid PJ; Voss E
    ScientificWorldJournal; 2003 Sep; 3():827-41. PubMed ID: 14532423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells.
    Wessels D; Voss E; Von Bergen N; Burns R; Stites J; Soll DR
    Cell Motil Cytoskeleton; 1998; 41(3):225-46. PubMed ID: 9829777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of 2D and 3D DIAS to motion analysis of live cells in transmission and confocal microscopy imaging.
    Wessels D; Kuhl S; Soll DR
    Methods Mol Biol; 2006; 346():261-79. PubMed ID: 16957296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional reconstruction and motion analysis of living, crawling cells.
    Soll DR; Voss E; Johnson O; Wessels D
    Scanning; 2000; 22(4):249-57. PubMed ID: 10958392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light microscopy to image and quantify cell movement.
    Wessels DJ; Kuhl S; Soll DR
    Methods Mol Biol; 2009; 571():455-71. PubMed ID: 19763985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D and 3D quantitative analysis of cell motility and cytoskeletal dynamics.
    Wessels D; Kuhl S; Soll DR
    Methods Mol Biol; 2009; 586():315-35. PubMed ID: 19768439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo.
    Heid PJ; Voss E; Soll DR
    Dev Biol; 2002 May; 245(2):329-47. PubMed ID: 11977985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium.
    Heid PJ; Geiger J; Wessels D; Voss E; Soll DR
    J Cell Sci; 2005 May; 118(Pt 10):2225-37. PubMed ID: 15855234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudopodium dynamics and rapid cell movement in Dictyostelium Ras pathway mutants.
    Chubb JR; Wilkins A; Wessels DJ; Soll DR; Insall RH
    Cell Motil Cytoskeleton; 2002 Oct; 53(2):150-62. PubMed ID: 12211111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell behavior and actomyosin organization in Dictyostelium during substrate exploration.
    Fukui Y; Murray J; Riddelle KS; Soll DR
    Cell Struct Funct; 1991 Aug; 16(4):289-301. PubMed ID: 1782667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Dynamic Morphology System": a method for quantitating changes in shape, pseudopod formation, and motion in normal and mutant amoebae of Dictyostelium discoideum.
    Soll DR; Voss E; Varnum-Finney B; Wessels D
    J Cell Biochem; 1988 Jun; 37(2):177-92. PubMed ID: 2456295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-assisted systems for the analysis of amoeboid cell motility.
    Soll DR; Wessels D; Voss E; Johnson O
    Methods Mol Biol; 2001; 161():45-58. PubMed ID: 11190516
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy.
    Schindl M; Wallraff E; Deubzer B; Witke W; Gerisch G; Sackmann E
    Biophys J; 1995 Mar; 68(3):1177-90. PubMed ID: 7756537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional organization of microtubules in tumor cells studied by confocal laser scanning microscopy and computer-assisted deconvolution and image reconstruction.
    Strohmaier AR; Porwol T; Acker H; Spiess E
    Cells Tissues Organs; 2000; 167(1):1-8. PubMed ID: 10899710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction and exploration of three-dimensional confocal microscopy data in an immersive virtual environment.
    Ai Z; Chen X; Rasmussen M; Folberg R
    Comput Med Imaging Graph; 2005 Jul; 29(5):313-8. PubMed ID: 15893451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Augmented reality in echocardiography. A new method of computer-assisted training and image processing using virtual and real three-dimensional data sets].
    Weidenbach M; Wick C; Pieper S; Redel DA
    Z Kardiol; 2000 Mar; 89(3):168-75. PubMed ID: 10798272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional analysis and visualization of myofibrillogenesis in adult cardiomyocytes by confocal microscopy.
    Messerli JM; Perriard JC
    Microsc Res Tech; 1995 Apr; 30(6):521-30. PubMed ID: 7599362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion.
    Tanner C; Flach B; Eggenberger C; Mattausch O; Bajka M; Goksel O
    Int J Comput Assist Radiol Surg; 2017 Aug; 12(8):1307-1317. PubMed ID: 28634788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modeling language (VRML)].
    Yu Z; Zheng S; Chen H; Wang J; Xiong Q; Jing W; Zeng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1104-8. PubMed ID: 17121364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.