These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 10092135)
1. Studies of bovine enterovirus structure by ultraviolet resonance Raman spectroscopy. Kaminaka S; Imamura Y; Shingu M; Kitagawa T; Toyoda T J Virol Methods; 1999 Feb; 77(2):117-23. PubMed ID: 10092135 [TBL] [Abstract][Full Text] [Related]
2. Demonstration by ultraviolet resonance Raman spectroscopy of differences in DNA organization and interactions in filamentous viruses Pf1 and fd. Wen ZQ; Armstrong A; Thomas GJ Biochemistry; 1999 Mar; 38(10):3148-56. PubMed ID: 10074370 [TBL] [Abstract][Full Text] [Related]
3. Structure and interactions of the single-stranded DNA genome of filamentous virus fd: investigation by ultraviolet resonance raman spectroscopy. Wen ZQ; Overman SA; Thomas GJ Biochemistry; 1997 Jun; 36(25):7810-20. PubMed ID: 9201924 [TBL] [Abstract][Full Text] [Related]
4. Ultraviolet resonance Raman studies of quaternary structure of hemoglobin using a tryptophan beta 37 mutant. Nagai M; Kaminaka S; Ohba Y; Nagai Y; Mizutani Y; Kitagawa T J Biol Chem; 1995 Jan; 270(4):1636-42. PubMed ID: 7829496 [TBL] [Abstract][Full Text] [Related]
5. Conformations, interactions, and thermostabilities of RNA and proteins in bean pod mottle virus: investigation of solution and crystal structures by laser Raman spectroscopy. Li T; Chen Z; Johnson JE; Thomas GJ Biochemistry; 1992 Jul; 31(29):6673-82. PubMed ID: 1637806 [TBL] [Abstract][Full Text] [Related]
6. Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins. Nagatomo S; Nagai M; Ogura T; Kitagawa T J Phys Chem B; 2013 Aug; 117(32):9343-53. PubMed ID: 23863193 [TBL] [Abstract][Full Text] [Related]
7. Ultraviolet-resonance raman spectroscopy of the filamentous virus Pf3: interactions of Trp 38 specific to the assembled virion subunit. Wen ZQ; Thomas GJ Biochemistry; 2000 Jan; 39(1):146-52. PubMed ID: 10625489 [TBL] [Abstract][Full Text] [Related]
8. Protein conformation change of myoglobin upon ligand binding probed by ultraviolet resonance Raman spectroscopy. Haruta N; Aki M; Ozaki S; Watanabe Y; Kitagawa T Biochemistry; 2001 Jun; 40(23):6956-63. PubMed ID: 11389611 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins. Schlamadinger DE; Gable JE; Kim JE J Phys Chem B; 2009 Nov; 113(44):14769-78. PubMed ID: 19817473 [TBL] [Abstract][Full Text] [Related]
10. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme. Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244 [TBL] [Abstract][Full Text] [Related]
12. Structure and organization of bacteriophage Pf3 probed by Raman and ultraviolet resonance Raman spectroscopy. Wen ZQ; Overman SA; Bondre P; Thomas GJ Biochemistry; 2001 Jan; 40(2):449-58. PubMed ID: 11148039 [TBL] [Abstract][Full Text] [Related]
13. Ultraviolet resonance Raman spectra of insulin and alpha-lactalbumin with 218- and 200-nm laser excitation. Rava RP; Spiro TG Biochemistry; 1985 Apr; 24(8):1861-5. PubMed ID: 3893540 [TBL] [Abstract][Full Text] [Related]
14. Structural studies of bean pod mottle virus, capsid, and RNA in crystal and solution states by laser Raman spectroscopy. Li TS; Chen ZG; Johnson JE; Thomas GJ Biochemistry; 1990 May; 29(21):5018-26. PubMed ID: 2378865 [TBL] [Abstract][Full Text] [Related]
15. UV resonance Raman and excited-state relaxation rate studies of hemoglobin. Cho N; Song S; Asher SA Biochemistry; 1994 May; 33(19):5932-41. PubMed ID: 8180222 [TBL] [Abstract][Full Text] [Related]